Pandas用法笔记总结 (详细)

目录

Pandas

创建对象

可视化数据

Geting数据

赋值

缺失数据处理

数据操作

字符串方法

查询聚合

重塑(reshape)

透视表(Pivot table)

时间序列(Time Series)

画图

Categoricals

文件输入输出获取数据(Getting Data In/Out)

csv

HDF5

Excel

python-获取当前工作路径


Pandas

这是一个简短的介绍pandas用法,主要面向新用户。 在Cookbook你可以看到更复杂的方法。

通常,我们导入以下模块:

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

创建对象

创建一个Series对象:

In [4]: s = pd.Series([1,3,5,np.nan,6,8])

In [5]: s

Out[5]:

0    1.0

1    3.0

2    5.0

3    NaN

4    6.0

5    8.0

dtype: float64

通过numpy数组创建一个DateFrame对象,包括索引和列标签:

In [6]: dates = pd.date_range('20130101', periods=6)

In [7]: dates

Out[7]:

DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',

               '2013-01-05', '2013-01-06'],

              dtype='datetime64[ns]', freq='D')

 

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

 

In [9]: df

Out[9]:

                   A         B         C         D

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2013-01-05 -0.424972  0.567020  0.276232 -1.087401

2013-01-06 -0.673690  0.113648 -1.478427  0.524988

通过字典方式创建DataFrame对象

In [10]: df2 = pd.DataFrame({ 'A' : 1.,

   ....:                      'B' : pd.Timestamp('20130102'),

   ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),

   ....:                      'D' : np.array([3] * 4,dtype='int32'),

   ....:                      'E' : pd.Categorical(["test","train","test","train"]),

   ....:                      'F' : 'foo' })

   ....:

 

In [11]: df2

Out[11]:

     A          B    C  D      E    F

0  1.0 2013-01-02  1.0  3   test  foo

1  1.0 2013-01-02  1.0  3  train  foo

2  1.0 2013-01-02  1.0  3   test  foo

3  1.0 2013-01-02  1.0  3  train  foo

查看各列的类型:

In [12]: df2.dtypes

Out[12]:

A           float64

B    datetime64[ns]

C           float32

D             int32

E          category

F            object

dtype: object

如果使用IPython,带有自动补全功能,可以利用tab键查看所有的列的名字和公有属性

In [13]: df2.

df2.A                  df2.boxplot

df2.abs                df2.C

df2.add                df2.clip

df2.add_prefix         df2.clip_lower

df2.add_suffix         df2.clip_upper

df2.align              df2.columns

df2.all                df2.combine

df2.any                df2.combineAdd

df2.append             df2.combine_first

df2.apply              df2.combineMult

df2.applymap           df2.compound

df2.as_blocks          df2.consolidate

df2.asfreq             df2.convert_objects

df2.as_matrix          df2.copy

df2.astype             df2.corr

df2.at                 df2.corrwith

df2.at_time            df2.count

df2.axes               df2.cov

df2.B                  df2.cummax

df2.between_time       df2.cummin

df2.bfill              df2.cumprod

df2.blocks             df2.cumsum

df2.bool               df2.D

可视化数据

查看首尾行数:

In [14]: df.head()

Out[14]:

                   A         B         C         D

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2013-01-05 -0.424972  0.567020  0.276232 -1.087401

 

In [15]: df.tail(3)

Out[15]:

                   A         B         C         D

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2013-01-05 -0.424972  0.567020  0.276232 -1.087401

2013-01-06 -0.673690  0.113648 -1.478427  0.524988

显示索引,列标签和底层numpy数据:

In [16]: df.index

Out[16]:

DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',

               '2013-01-05', '2013-01-06'],

              dtype='datetime64[ns]', freq='D')

 

In [17]: df.columns

Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object')

 

In [18]: df.values

Out[18]:

array([[ 0.4691, -0.2829, -1.5091, -1.1356],

       [ 1.2121, -0.1732,  0.1192, -1.0442],

       [-0.8618, -2.1046, -0.4949,  1.0718],

       [ 0.7216, -0.7068, -1.0396,  0.2719],

       [-0.425 ,  0.567 ,  0.2762, -1.0874],

       [-0.6737,  0.1136, -1.4784,  0.525 ]])

describe方法显示数据的快速统计汇总结果:

In [19]: df.describe()

Out[19]:

              A         B         C         D

count  6.000000  6.000000  6.000000  6.000000

mean   0.073711 -0.431125 -0.687758 -0.233103

std    0.843157  0.922818  0.779887  0.973118

min   -0.861849 -2.104569 -1.509059 -1.135632

25%   -0.611510 -0.600794 -1.368714 -1.076610

50%    0.022070 -0.228039 -0.767252 -0.386188

75%    0.658444  0.041933 -0.034326  0.461706

max    1.212112  0.567020  0.276232  1.071804

转置数据:

In [20]: df.T

Out[20]:

   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06

A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690

B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648

C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427

D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

按索引排序:

In [21]: df.sort_index(axis=1, ascending=False)

Out[21]:

                   D         C         B         A

2013-01-01 -1.135632 -1.509059 -0.282863  0.469112

2013-01-02 -1.044236  0.119209 -0.173215  1.212112

2013-01-03  1.071804 -0.494929 -2.104569 -0.861849

2013-01-04  0.271860 -1.039575 -0.706771  0.721555

2013-01-05 -1.087401  0.276232  0.567020 -0.424972

2013-01-06  0.524988 -1.478427  0.113648 -0.673690

按指定列的值排序:

In [22]: df.sort_values(by='B')

Out[22]:

                   A         B         C         D

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-06 -0.673690  0.113648 -1.478427  0.524988

2013-01-05 -0.424972  0.567020  0.276232 -1.087401

选择数据

Note:标准Python/Numpy的数据选择和设置很直观和方便,但是在生产环境,我们推荐优化的pandas方法,如at, .iat, .loc, .iloc 和 .ix

Geting数据

选择一列数据,返回Series数据类型,和 df.A 命令等价:

In [23]: df['A']

Out[23]:

2013-01-01    0.469112

2013-01-02    1.212112

2013-01-03   -0.861849

2013-01-04    0.721555

2013-01-05   -0.424972

2013-01-06   -0.673690

Freq: D, Name: A, dtype: float64

通过 [] 选择行数据

In [24]: df[0:3]

Out[24]:

                   A         B         C         D

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

 

In [25]: df['20130102':'20130104']

Out[25]:

                   A         B         C         D

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

列标签选择数据

通过date索引获取一个横截面(cross section)数据

In [26]: df.loc[dates[0]]

Out[26]:

A    0.469112

B   -0.282863

C   -1.509059

D   -1.135632

Name: 2013-01-01 00:00:00, dtype: float64

多个标签获取数据:

In [27]: df.loc[:,['A','B']]

Out[27]:

                   A         B

2013-01-01  0.469112 -0.282863

2013-01-02  1.212112 -0.173215

2013-01-03 -0.861849 -2.104569

2013-01-04  0.721555 -0.706771

2013-01-05 -0.424972  0.567020

2013-01-06 -0.673690  0.113648

切片数据:

In [28]: df.loc['20130102':'20130104',['A','B']]

Out[28]:

                   A         B

2013-01-02  1.212112 -0.173215

2013-01-03 -0.861849 -2.104569

2013-01-04  0.721555 -0.706771

在切片数据上精简维度:

In [29]: df.loc['20130102',['A','B']]

Out[29]:

A    1.212112

B   -0.173215

Name: 2013-01-02 00:00:00, dtype: float64

获取一个标量数据:

In [30]: df.loc[dates[0],'A']

Out[30]: 0.46911229990718628

一个更快速获取标量数据的方法(和上一个方法等同):

In [31]: df.at[dates[0],'A']

Out[31]: 0.46911229990718628

通过位置获取数据

通过传递一个整数值定位:

In [32]: df.iloc[3]

Out[32]:

A    0.721555

B   -0.706771

C   -1.039575

D    0.271860

Name: 2013-01-04 00:00:00, dtype: float64

类似Numpy/python,通过切片定位:

In [33]: df.iloc[3:5,0:2]

Out[33]:

                   A         B

2013-01-04  0.721555 -0.706771

2013-01-05 -0.424972  0.567020

通过整数列表定位:

In [34]: df.iloc[[1,2,4],[0,2]]

Out[34]:

                   A         C

2013-01-02  1.212112  0.119209

2013-01-03 -0.861849 -0.494929

2013-01-05 -0.424972  0.276232

指定行切片

In [35]: df.iloc[1:3,:]

Out[35]:

                   A         B         C         D

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

指定列切片:

In [36]: df.iloc[:,1:3]

Out[36]:

                   B         C

2013-01-01 -0.282863 -1.509059

2013-01-02 -0.173215  0.119209

2013-01-03 -2.104569 -0.494929

2013-01-04 -0.706771 -1.039575

2013-01-05  0.567020  0.276232

2013-01-06  0.113648 -1.478427

通过位置获取值:

In [37]: df.iloc[1,1]

Out[37]: -0.17321464905330858

类似的iat方法:

In [38]: df.iat[1,1]

Out[38]: -0.17321464905330858

布尔索引

通过单列值取数:

In [39]: df[df.A > 0]

Out[39]:

                   A         B         C         D

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

一个where操作取值:

In [40]: df[df > 0]

Out[40]:

                   A         B         C         D

2013-01-01  0.469112       NaN       NaN       NaN

2013-01-02  1.212112       NaN  0.119209       NaN

2013-01-03       NaN       NaN       NaN  1.071804

2013-01-04  0.721555       NaN       NaN  0.271860

2013-01-05       NaN  0.567020  0.276232       NaN

2013-01-06       NaN  0.113648       NaN  0.524988

isin()方法:

In [41]: df2 = df.copy()

 

In [42]: df2['E'] = ['one', 'one','two','three','four','three']

 

In [43]: df2

Out[43]:

                   A         B         C         D      E

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one

2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two

2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three

2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four

2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three

 

In [44]: df2[df2['E'].isin(['two','four'])]

Out[44]:

                   A         B         C         D     E

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two

2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

赋值

相同索引赋值一列数据:

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))

 

In [46]: s1

Out[46]:

2013-01-02    1

2013-01-03    2

2013-01-04    3

2013-01-05    4

2013-01-06    5

2013-01-07    6

Freq: D, dtype: int64

 

In [47]: df['F'] = s1

通过标签赋值

In [48]: df.at[dates[0],'A'] = 0

 

位置赋值

In [49]: df.iat[0,1] = 0

numpy数组赋值:

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

前面操作的结果展示:

In [51]: df

Out[51]:

                   A         B         C  D    F

2013-01-01  0.000000  0.000000 -1.509059  5  NaN

2013-01-02  1.212112 -0.173215  0.119209  5  1.0

2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0

2013-01-04  0.721555 -0.706771 -1.039575  5  3.0

2013-01-05 -0.424972  0.567020  0.276232  5  4.0

2013-01-06 -0.673690  0.113648 -1.478427  5  5.0

where操作赋值

In [52]: df2 = df.copy()

 

In [53]: df2[df2 > 0] = -df2

 

In [54]: df2

Out[54]:

                   A         B         C  D    F

2013-01-01  0.000000  0.000000 -1.509059 -5  NaN

2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0

2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0

2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0

2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0

2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

缺失数据处理

pandas 主要用np.nan表示缺失数据,默认不列入计算。

 

reindex方法允许在指定的轴上增/删/改原索引,返回一个副本:

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

 

In [56]: df1.loc[dates[0]:dates[1],'E'] = 1

 

In [57]: df1

Out[57]:

                   A         B         C  D    F    E

2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0

2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN

2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

 

删除有缺失值的行:

In [58]: df1.dropna(how='any')

Out[58]:

                   A         B         C  D    F    E

2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

 

在缺失值位置填充:

In [59]: df1.fillna(value=5)

Out[59]:

                   A         B         C  D    F    E

2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0

2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0

2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0

 

判断是否缺失,返回布尔集:

In [60]: pd.isnull(df1)

Out[60]:

                A      B      C      D      F      E

2013-01-01  False  False  False  False   True  False

2013-01-02  False  False  False  False  False  False

2013-01-03  False  False  False  False  False   True

2013-01-04  False  False  False  False  False   True

数据操作

Operations 通常排除缺失数据

描述统计:

In [61]: df.mean()

Out[61]:

A   -0.004474

B   -0.383981

C   -0.687758

D    5.000000

F    3.000000

dtype: float64

同样操作在标签维度:

In [62]: df.mean(1)

Out[62]:

2013-01-01    0.872735

2013-01-02    1.431621

2013-01-03    0.707731

2013-01-04    1.395042

2013-01-05    1.883656

2013-01-06    1.592306

Freq: D, dtype: float64

pandas操作不同维度的数据需要对齐,另外它会按指定的维度方向计算:

In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)

 

In [64]: s

Out[64]:

2013-01-01    NaN

2013-01-02    NaN

2013-01-03    1.0

2013-01-04    3.0

2013-01-05    5.0

2013-01-06    NaN

Freq: D, dtype: float64

 

In [65]: df.sub(s, axis='index')

Out[65]:

                   A         B         C    D    F

2013-01-01       NaN       NaN       NaN  NaN  NaN

2013-01-02       NaN       NaN       NaN  NaN  NaN

2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0

2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0

2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0

2013-01-06       NaN       NaN       NaN  NaN  NaN

 

apply方法

applying 函数:

In [66]: df.apply(np.cumsum)

Out[66]:

                   A         B         C   D     F

2013-01-01  0.000000  0.000000 -1.509059   5   NaN

2013-01-02  1.212112 -0.173215 -1.389850  10   1.0

2013-01-03  0.350263 -2.277784 -1.884779  15   3.0

2013-01-04  1.071818 -2.984555 -2.924354  20   6.0

2013-01-05  0.646846 -2.417535 -2.648122  25  10.0

2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0

 

In [67]: df.apply(lambda x: x.max() - x.min())

Out[67]:

A    2.073961

B    2.671590

C    1.785291

D    0.000000

F    4.000000

dtype: float64

直方图

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

 

In [69]: s

Out[69]:

0    4

1    2

2    1

3    2

4    6

5    4

6    4

7    6

8    4

9    4

dtype: int64

 

In [70]: s.value_counts()

Out[70]:

4    5

6    2

2    2

1    1

dtype: int64

字符串方法

Series中的字符处理方法Python中的str方法一样。另外str方法默认在模式匹配的时候默认使用正则表达。

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

 

In [72]: s.str.lower()

Out[72]:

0       a

1       b

2       c

3    aaba

4    baca

5     NaN

6    caba

7     dog

8     cat

dtype: object

查询聚合

合并(merge)

concat方法

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

 

In [74]: df

Out[74]:

          0         1         2         3

0 -0.548702  1.467327 -1.015962 -0.483075

1  1.637550 -1.217659 -0.291519 -1.745505

2 -0.263952  0.991460 -0.919069  0.266046

3 -0.709661  1.669052  1.037882 -1.705775

4 -0.919854 -0.042379  1.247642 -0.009920

5  0.290213  0.495767  0.362949  1.548106

6 -1.131345 -0.089329  0.337863 -0.945867

7 -0.932132  1.956030  0.017587 -0.016692

8 -0.575247  0.254161 -1.143704  0.215897

9  1.193555 -0.077118 -0.408530 -0.862495

 

# break it into pieces

In [75]: pieces = [df[:3], df[3:7], df[7:]]

 

In [76]: pd.concat(pieces)

Out[76]:

          0         1         2         3

0 -0.548702  1.467327 -1.015962 -0.483075

1  1.637550 -1.217659 -0.291519 -1.745505

2 -0.263952  0.991460 -0.919069  0.266046

3 -0.709661  1.669052  1.037882 -1.705775

4 -0.919854 -0.042379  1.247642 -0.009920

5  0.290213  0.495767  0.362949  1.548106

6 -1.131345 -0.089329  0.337863 -0.945867

7 -0.932132  1.956030  0.017587 -0.016692

8 -0.575247  0.254161 -1.143704  0.215897

9  1.193555 -0.077118 -0.408530 -0.862495

join方法

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

 

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

 

In [79]: left

Out[79]:

   key  lval

0  foo     1

1  foo     2

 

In [80]: right

Out[80]:

   key  rval

0  foo     4

1  foo     5

 

In [81]: pd.merge(left, right, on='key')

Out[81]:

   key  lval  rval

0  foo     1     4

1  foo     1     5

2  foo     2     4

3  foo     2     5

append方法

在DataFrame中增加一列:

In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

 

In [83]: df

Out[83]:

          A         B         C         D

0  1.346061  1.511763  1.627081 -0.990582

1 -0.441652  1.211526  0.268520  0.024580

2 -1.577585  0.396823 -0.105381 -0.532532

3  1.453749  1.208843 -0.080952 -0.264610

4 -0.727965 -0.589346  0.339969 -0.693205

5 -0.339355  0.593616  0.884345  1.591431

6  0.141809  0.220390  0.435589  0.192451

7 -0.096701  0.803351  1.715071 -0.708758

 

In [84]: s = df.iloc[3]

 

In [85]: df.append(s, ignore_index=True)

Out[85]:

          A         B         C         D

0  1.346061  1.511763  1.627081 -0.990582

1 -0.441652  1.211526  0.268520  0.024580

2 -1.577585  0.396823 -0.105381 -0.532532

3  1.453749  1.208843 -0.080952 -0.264610

4 -0.727965 -0.589346  0.339969 -0.693205

5 -0.339355  0.593616  0.884345  1.591431

6  0.141809  0.220390  0.435589  0.192451

7 -0.096701  0.803351  1.715071 -0.708758

分组(grouping

在”group by”的时候涉及到以下几步:

Spliting 按条件分割数据

Applying 在每组上应用函数

Combing 合并成一个数据集

In [86]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',

   ....:                           'foo', 'bar', 'foo', 'foo'],

   ....:                    'B' : ['one', 'one', 'two', 'three',

   ....:                           'two', 'two', 'one', 'three'],

   ....:                    'C' : np.random.randn(8),

   ....:                    'D' : np.random.randn(8)})

   ....:

 

In [87]: df

Out[87]:

     A      B         C         D

0  foo    one -1.202872 -0.055224

1  bar    one -1.814470  2.395985

2  foo    two  1.018601  1.552825

3  bar  three -0.595447  0.166599

4  foo    two  1.395433  0.047609

5  bar    two -0.392670 -0.136473

6  foo    one  0.007207 -0.561757

7  foo  three  1.928123 -1.623033

先分组然后应用sum函数:

In [88]: df.groupby('A').sum()

Out[88]:

            C        D

A                    

bar -2.802588  2.42611

foo  3.146492 -0.63958

 

通过多列分组并生成层次索引,然后应用函数:

In [89]: df.groupby(['A','B']).sum()

Out[89]:

                  C         D

A   B                        

bar one   -1.814470  2.395985

    three -0.595447  0.166599

    two   -0.392670 -0.136473

foo one   -1.195665 -0.616981

    three  1.928123 -1.623033

    two    2.414034  1.600434

重塑(reshape)

stack方法

In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',

   ....:                      'foo', 'foo', 'qux', 'qux'],

   ....:                     ['one', 'two', 'one', 'two',

   ....:                      'one', 'two', 'one', 'two']]))

   ....:

 

In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

 

In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

 

In [93]: df2 = df[:4]

 

In [94]: df2

Out[94]:

                     A         B

first second                   

bar   one     0.029399 -0.542108

      two     0.282696 -0.087302

baz   one    -1.575170  1.771208

      two     0.816482  1.100230

stack方法用列标签新增一层索引

In [95]: stacked = df2.stack()

 

In [96]: stacked

Out[96]:

first  second  

bar    one     A    0.029399

               B   -0.542108

       two     A    0.282696

               B   -0.087302

baz    one     A   -1.575170

               B    1.771208

       two     A    0.816482

               B    1.100230

dtype: float64

stack方法的逆操作为unstack,默认解压最后一层:

In [97]: stacked.unstack()

Out[97]:

                     A         B

first second                   

bar   one     0.029399 -0.542108

      two     0.282696 -0.087302

baz   one    -1.575170  1.771208

      two     0.816482  1.100230

 

In [98]: stacked.unstack(1)

Out[98]:

second        one       two

first                     

bar   A  0.029399  0.282696

      B -0.542108 -0.087302

baz   A -1.575170  0.816482

      B  1.771208  1.100230

 

In [99]: stacked.unstack(0)

Out[99]:

first          bar       baz

second                     

one    A  0.029399 -1.575170

       B -0.542108  1.771208

two    A  0.282696  0.816482

       B -0.087302  1.100230

透视表(Pivot table)

In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,

   .....:                    'B' : ['A', 'B', 'C'] * 4,

   .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,

   .....:                    'D' : np.random.randn(12),

   .....:                    'E' : np.random.randn(12)})

   .....:

 

In [101]: df

Out[101]:

        A  B    C         D         E

0     one  A  foo  1.418757 -0.179666

1     one  B  foo -1.879024  1.291836

2     two  C  foo  0.536826 -0.009614

3   three  A  bar  1.006160  0.392149

4     one  B  bar -0.029716  0.264599

5     one  C  bar -1.146178 -0.057409

6     two  A  foo  0.100900 -1.425638

7   three  B  foo -1.035018  1.024098

8     one  C  foo  0.314665 -0.106062

9     one  A  bar -0.773723  1.824375

10    two  B  bar -1.170653  0.595974

11  three  C  bar  0.648740  1.167115

可以通过pivot_table方法很轻松的透视数据:

In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])

Out[102]:

C             bar       foo

A     B                    

one   A -0.773723  1.418757

      B -0.029716 -1.879024

      C -1.146178  0.314665

three A  1.006160       NaN

      B       NaN -1.035018

      C  0.648740       NaN

two   A       NaN  0.100900

      B -1.170653       NaN

      C       NaN  0.536826

时间序列(Time Series)

pandas 拥有简单,强大,高效的函数用来处理频率转换中的重采样问题(例如将秒数据转换为5分钟数据)。

 

In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

 

In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

 

In [105]: ts.resample('5Min').sum()

Out[105]:

2012-01-01    25083

Freq: 5T, dtype: int64

时区表示:

In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [108]: ts

Out[108]:

2012-03-06    0.464000

2012-03-07    0.227371

2012-03-08   -0.496922

2012-03-09    0.306389

2012-03-10   -2.290613

Freq: D, dtype: float64

In [109]: ts_utc = ts.tz_localize('UTC')

In [110]: ts_utc

Out[110]:

2012-03-06 00:00:00+00:00    0.464000

2012-03-07 00:00:00+00:00    0.227371

2012-03-08 00:00:00+00:00   -0.496922

2012-03-09 00:00:00+00:00    0.306389

2012-03-10 00:00:00+00:00   -2.290613

Freq: D, dtype: float64

转换时区

In [111]: ts_utc.tz_convert('US/Eastern')

Out[111]:

2012-03-05 19:00:00-05:00    0.464000

2012-03-06 19:00:00-05:00    0.227371

2012-03-07 19:00:00-05:00   -0.496922

2012-03-08 19:00:00-05:00    0.306389

2012-03-09 19:00:00-05:00   -2.290613

Freq: D, dtype: float64

时区跨度转换:

In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')

In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [114]: ts

Out[114]:

2012-01-31   -1.134623

2012-02-29   -1.561819

2012-03-31   -0.260838

2012-04-30    0.281957

2012-05-31    1.523962

Freq: M, dtype: float64

In [115]: ps = ts.to_period()

In [116]: ps

Out[116]:

2012-01   -1.134623

2012-02   -1.561819

2012-03   -0.260838

2012-04    0.281957

2012-05    1.523962

Freq: M, dtype: float64

 

In [117]: ps.to_timestamp()

Out[117]:

2012-01-01   -1.134623

2012-02-01   -1.561819

2012-03-01   -0.260838

2012-04-01    0.281957

2012-05-01    1.523962

Freq: MS, dtype: float64

period和timestamp之间的转换让某些算术函数应用起来非常方便。下面的例子将一个quarterly frequency with year ending in November 转化成 9am of the end of the month following the quarter end:

In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [121]: ts.head()

Out[121]:

1990-03-01 09:00   -0.902937

1990-06-01 09:00    0.068159

1990-09-01 09:00   -0.057873

1990-12-01 09:00   -0.368204

1991-03-01 09:00   -1.144073

Freq: H, dtype: float64

画图

In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))

 

In [131]: ts = ts.cumsum()

 

In [132]: ts.plot()

Out[132]:

在DataFrame中画出所有列:

In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,

   .....:                   columns=['A', 'B', 'C', 'D'])

   .....:

 

In [134]: df = df.cumsum()

 

In [135]: plt.figure(); df.plot(); plt.legend(loc='best')

Out[135]:

 

Categoricals

从0.15版开始,DateFrame已经包含了categorical类型

将原始数据转换为categorical类型:

In [123]: df["grade"] = df["raw_grade"].astype("category")

In [124]: df["grade"]

Out[124]:

0    a

1    b

2    b

3    a

4    a

5    e

Name: grade, dtype: category

Categories (3, object): [a, b, e]

重命名categorical类型:

In [125]: df["grade"].cat.categories = ["very good","good","very bad"]

重新排列并新增缺失数据:

In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

 

In [127]: df["grade"]

Out[127]:

0    very good

1         good

2         good

3    very good

4    very good

5     very bad

Name: grade, dtype: category

Categories (5, object): [very bad, bad, medium, good, very good]

排序:

In [128]: df.sort_values(by="grade")

Out[128]:

   id raw_grade      grade

5   6         e   very bad

1   2         b       good

2   3         b       good

0   1         a  very good

3   4         a  very good

4   5         a  very good

分组:

In [129]: df.groupby("grade").size()

Out[129]:

grade

very bad     1

bad          0

medium       0

good         2

very good    3

dtype: int64

文件输入输出获取数据(Getting Data In/Out)

csv

将数据写入一个csv文件:

In [136]: df.to_csv('foo.csv')

读取csv数据文件

In [137]: pd.read_csv('foo.csv')

Out[137]:

     Unnamed: 0          A          B         C          D

0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860

1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953

2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536

3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896

4    2000-01-05   0.578117   0.511371  0.103552  -2.428202

5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409

6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753

..          ...        ...        ...       ...        ...

993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940

994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107

995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740

996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439

997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593

998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560

999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

 

[1000 rows x 5 columns]

HDF5

写入HDF5

In [138]: df.to_hdf('foo.h5','df')

读取HDF5文件:

In [139]: pd.read_hdf('foo.h5','df')

Out[139]:

                    A          B         C          D

2000-01-01   0.266457  -0.399641 -0.219582   1.186860

2000-01-02  -1.170732  -0.345873  1.653061  -0.282953

2000-01-03  -1.734933   0.530468  2.060811  -0.515536

2000-01-04  -1.555121   1.452620  0.239859  -1.156896

2000-01-05   0.578117   0.511371  0.103552  -2.428202

2000-01-06   0.478344   0.449933 -0.741620  -1.962409

2000-01-07   1.235339  -0.091757 -1.543861  -1.084753

...               ...        ...       ...        ...

2002-09-20 -10.628548  -9.153563 -7.883146  28.313940

2002-09-21 -10.390377  -8.727491 -6.399645  30.914107

2002-09-22  -8.985362  -8.485624 -4.669462  31.367740

2002-09-23  -9.558560  -8.781216 -4.499815  30.518439

2002-09-24  -9.902058  -9.340490 -4.386639  30.105593

2002-09-25 -10.216020  -9.480682 -3.933802  29.758560

2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

 

[1000 rows x 4 columns]

Excel

写入excel:

In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

  • 1

读取Excel:

In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])

Out[141]:

                    A          B         C          D

2000-01-01   0.266457  -0.399641 -0.219582   1.186860

2000-01-02  -1.170732  -0.345873  1.653061  -0.282953

2000-01-03  -1.734933   0.530468  2.060811  -0.515536

2000-01-04  -1.555121   1.452620  0.239859  -1.156896

2000-01-05   0.578117   0.511371  0.103552  -2.428202

2000-01-06   0.478344   0.449933 -0.741620  -1.962409

2000-01-07   1.235339  -0.091757 -1.543861  -1.084753

...               ...        ...       ...        ...

2002-09-20 -10.628548  -9.153563 -7.883146  28.313940

2002-09-21 -10.390377  -8.727491 -6.399645  30.914107

2002-09-22  -8.985362  -8.485624 -4.669462  31.367740

2002-09-23  -9.558560  -8.781216 -4.499815  30.518439

2002-09-24  -9.902058  -9.340490 -4.386639  30.105593

2002-09-25 -10.216020  -9.480682 -3.933802  29.758560

2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

 

[1000 rows x 4 columns]

python-获取当前工作路径

  1. sys.argv[0]
  2. import sys
  3. print sys.argv[0]

#获得的是当前执行脚本的位置(若在命令行执行的该命令,则为空)

运行结果(在python脚本中执行的结果):

F:/SEG/myResearch/myProject_2/test.py

  1. os模块
import os
print os.getcwd()#获得当前工作目录
print os.path.abspath('.')#获得当前工作目录
print os.path.abspath('..')#获得当前工作目录的父目录
print os.path.abspath(os.curdir)#获得当前工作目录

运行结果:

F:\SEG\myResearch\myProject_2 
F:\SEG\myResearch\myProject_2 
F:\SEG\myResearch 
F:\SEG\myResearch\myProject_2

注:argv[0]只是得到的是当前脚本的绝对位置;而os模块中的几种获得路径的方法,得到的是当前的工作目录,如:open('1.txt','r'),则会在当前工作目录查找该文件。即大部分的文件操作都是相对于当前工作路径。

  1. 若要改变当前工作路径,可以用:os.chdir(path) 。

如os.chdir(E:\Program Files),则大部分的文件操作就会是相对于E:\dir1。

fobj = open('Hello.txt'),实际会打开E:\Program Files\Hello.txt文件。

 
 
 
 
 
 
 
 
 

 

你可能感兴趣的:(数据分析包使用,Python数据分析)