# Using TensorFlow for Deep Dream
#---------------------------------------
# From: Alexander Mordvintsev
# --https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream
#
# Make sure to download the deep dream model here:
# https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
#
# Run:
# me@computer:~$ wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
# me@computer:~$ unzip inception5h.zip
#
# More comments added inline.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
import tensorflow as tf
from io import BytesIO
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Start a graph session
graph = tf.Graph()
sess = tf.InteractiveSession(graph=graph)
os.chdir('~/Documents/tensorflow/inception-v1-model/')
# Model filename
model_fn = 'tensorflow_inception_graph.pb'
# Load graph parameters
with tf.gfile.FastGFile(model_fn, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# Create placeholder for input
t_input = tf.placeholder(np.float32, name='input')
# Imagenet average bias to subtract off images
imagenet_mean = 117.0
t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0)
tf.import_graph_def(graph_def, {'input':t_preprocessed})
# Create a list of layers that we can refer to later
layers = [op.name for op in graph.get_operations() if op.type=='Conv2D' and 'import/' in op.name]
# Count how many outputs for each layer
feature_nums = [int(graph.get_tensor_by_name(name+':0').get_shape()[-1]) for name in layers]
# Print count of layers and outputs (features nodes)
print('Number of layers', len(layers))
print('Total number of feature channels:', sum(feature_nums))
# Picking some internal layer. Note that we use outputs before applying the ReLU nonlinearity
# to have non-zero gradients for features with negative initial activations.
layer = 'mixed4d_3x3_bottleneck_pre_relu'
channel = 30 # picking some feature channel to visualize
# start with a gray image with a little noise
img_noise = np.random.uniform(size=(224,224,3)) + 100.0
def showarray(a, fmt='jpeg'):
# First make sure everything is between 0 and 255
a = np.uint8(np.clip(a, 0, 1)*255)
# Pick an in-memory format for image display
f = BytesIO()
# Create the in memory image
PIL.Image.fromarray(a).save(f, fmt)
# Show image
plt.imshow(a)
def T(layer):
'''Helper for getting layer output tensor'''
return graph.get_tensor_by_name("import/%s:0"%layer)
# The following function returns a function wrapper that will create the placeholder
# inputs of a specified dtype
def tffunc(*argtypes):
'''Helper that transforms TF-graph generating function into a regular one.
See "resize" function below.
'''
placeholders = list(map(tf.placeholder, argtypes))
def wrap(f):
out = f(*placeholders)
def wrapper(*args, **kw):
return out.eval(dict(zip(placeholders, args)), session=kw.get('session'))
return wrapper
return wrap
# Helper function that uses TF to resize an image
def resize(img, size):
img = tf.expand_dims(img, 0)
# Change 'img' size by linear interpolation
return tf.image.resize_bilinear(img, size)[0, :, :, :]
def calc_grad_tiled(img, t_grad, tile_size=512):
'''Compute the value of tensor t_grad over the image in a tiled way.
Random shifts are applied to the image to blur tile boundaries over
multiple iterations.'''
# Pick a subregion square size
sz = tile_size
# Get the image height and width
h, w = img.shape[:2]
# Get a random shift amount in the x and y direction
sx, sy = np.random.randint(sz, size=2)
# Randomly shift the image (roll image) in the x and y directions
img_shift = np.roll(np.roll(img, sx, 1), sy, 0)
# Initialize the while image gradient as zeros
grad = np.zeros_like(img)
# Now we loop through all the sub-tiles in the image
for y in range(0, max(h-sz//2, sz),sz):
for x in range(0, max(w-sz//2, sz),sz):
# Select the sub image tile
sub = img_shift[y:y+sz,x:x+sz]
# Calculate the gradient for the tile
g = sess.run(t_grad, {t_input:sub})
# Apply the gradient of the tile to the whole image gradient
grad[y:y+sz,x:x+sz] = g
# Return the gradient, undoing the roll operation
return np.roll(np.roll(grad, -sx, 1), -sy, 0)
def render_deepdream(t_obj, img0=img_noise,
iter_n=10, step=1.5, octave_n=4, octave_scale=1.4):
# defining the optimization objective, the objective is the mean of the feature
t_score = tf.reduce_mean(t_obj)
# Our gradients will be defined as changing the t_input to get closer to
# the values of t_score. Here, t_score is the mean of the feature we select,
# and t_input will be the image octave (starting with the last)
t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation!
# Store the image
img = img0
# Initialize the octave list
octaves = []
# Since we stored the image, we need to only calculate n-1 octaves
for i in range(octave_n-1):
# Extract the image shape
hw = img.shape[:2]
# Resize the image, scale by the octave_scale (resize by linear interpolation)
lo = resize(img, np.int32(np.float32(hw)/octave_scale))
# Residual is hi. Where residual = image - (Resize lo to be hw-shape)
hi = img-resize(lo, hw)
# Save the lo image for re-iterating
img = lo
# Save the extracted hi-image
octaves.append(hi)
# generate details octave by octave
for octave in range(octave_n):
if octave>0:
# Start with the last octave
hi = octaves[-octave]
#
img = resize(img, hi.shape[:2])+hi
for i in range(iter_n):
# Calculate gradient of the image.
g = calc_grad_tiled(img, t_grad)
# Ideally, we would just add the gradient, g, but
# we want do a forward step size of it ('step'),
# and divide it by the avg. norm of the gradient, so
# we are adding a gradient of a certain size each step.
# Also, to make sure we aren't dividing by zero, we add 1e-7.
img += g*(step / (np.abs(g).mean()+1e-7))
print('.',end = ' ')
showarray(img/255.0)
# Run Deep Dream
if __name__=="__main__":
# Create resize function that has a wrapper that creates specified placeholder types
resize = tffunc(np.float32, np.int32)(resize)
# Open image
img0 = PIL.Image.open('book_cover.jpg')
img0 = np.float32(img0)
# Show Original Image
showarray(img0/255.0)
# Create deep dream
render_deepdream(T(layer)[:, :, :, channel], img0, iter_n=15)
sess.close()