Reduce,顾名思义为减少的意思,就是根据指定的计算模型将Stream中的值计算得到一个最终结果。在之前的一篇文章Java8函数式编程中简单介绍,Stream的count、min 和max方法底层都是依赖reduce实现的,本篇文章将简单介绍一下Java8 Stream reduce的几种基本用法。
首先来看一下Reduce三种形式:
S.N. | 方法说明 |
---|---|
1 | Optional 对Stream中的数据通过累加器accumulator迭代计算,最终得到一个Optional对象 |
2 | T reduce(T identity, BinaryOperator 给定一个初始值identity,通过累加器accumulator迭代计算,得到一个同Stream中数据同类型的结果 |
3 | U reduce(U identity, BiFunction accumulator, BinaryOperator combiner); 给定一个初始值identity,通过累加器accumulator迭代计算,得到一个identity类型的结果,第三个参数用于使用并行流时合并结果 |
首先看一下函数式接口BinaryOperator,继承于BiFunction,Bifunction中有一个apply方法,接收两个参数,返回一个结果。如下:
@FunctionalInterface
public interface BinaryOperator extends BiFunction {
}
@FunctionalInterface
public interface BiFunction {
R apply(T t, U u);
}
也就是说,reduce(BinaryOperator
@Test
public void reduceTest() {
Optional accResult = Stream.of(1, 2, 3, 4)
.reduce((acc, item) -> {
System.out.println("acc : " + acc);
acc += item;
System.out.println("item: " + item);
System.out.println("acc+ : " + acc);
System.out.println("--------");
return acc;
});
System.out.println(accResult);
}
运行结果:
acc : 1
item: 2
acc+ : 3
--------
acc : 3
item: 3
acc+ : 6
--------
acc : 6
item: 4
acc+ : 10
--------
Optional[10]
提供一个跟Stream中数据同类型的初始值identity,通过累加器accumulator迭代计算Stream中的数据,得到一个跟Stream中数据相同类型的最终结果,可以如下调用:
@Test
public void reduceTest1() {
int accResult = Stream.of(1, 2, 3, 4)
.reduce(100, (acc, item) -> {
System.out.println("acc : " + acc);
acc += item;
System.out.println("item: " + item);
System.out.println("acc+ : " + acc);
System.out.println("--------");
return acc;
});
System.out.println(accResult);
}
运行结果:
acc : 100
item: 1
acc+ : 101
--------
acc : 101
item: 2
acc+ : 103
--------
acc : 103
item: 3
acc+ : 106
--------
acc : 106
item: 4
acc+ : 110
--------
110
首先看一下BiFunction的三个泛型类型分别是U、 ? super T、U,参考BiFunction函数式接口apply方法定义可以知道,累加器累加器通过类型为U和? super T的两个输入值计算得到一个U类型的结果返回。也就是说这种reduce方法,提供一个不同于Stream中数据类型的初始值,通过累加器规则迭代计算Stream中的数据,最终得到一个同初始值同类型的结果。看一个调用示例:
@Test
public void reduceTest2() {
ArrayList accResult_ = Stream.of(2, 3, 4)
.reduce(Lists.newArrayList(1),
(acc, item) -> {
acc.add(item);
System.out.println("item: " + item);
System.out.println("acc+ : " + acc);
System.out.println("BiFunction");
return acc;
}, (acc, item) -> {
System.out.println("BinaryOperator");
acc.addAll(item);
System.out.println("item: " + item);
System.out.println("acc+ : " + acc);
System.out.println("--------");
return acc;
}
);
System.out.println("accResult_: " + accResult_);
}
运行结果:
item: 2
acc+ : [1, 2]
BiFunction
item: 3
acc+ : [1, 2, 3]
BiFunction
item: 4
acc+ : [1, 2, 3, 4]
BiFunction
accResult_: [1, 2, 3, 4]
通过运行结果可以看出,第三个参数定义的规则并没有执行。这是因为reduce的第三个参数是在使用parallelStream的reduce操作时,合并各个流结果的,本例中使用的是stream,所以第三个参数是不起作用的。上述示例,提供一个只有一个元素1的arrayList,通过累加器迭代,将stream中的数据添加到arrayList中。
以上就是stream中reduce的三种用法,用来通过特定的规则计算stream中的值,得到一个最终结果,其实还是很简单的。推荐一篇刚看到的讲解Java8 Stream的文章,Java Stream 详解,我陆陆续续也写了好几篇关于Java8新特性的文章了,但是比较下来并没有上面那篇文写的那么体系,之后的文章可以借鉴一下那篇文章的组织方法。
示例代码:码云 – 卓立 – Java8 Stream reduce示例
参考链接:
- Java 8系列之Stream中万能的reduce
- Java8初体验(二)Stream语法详解