1.1 当使用ucos时才有以下部分:
主要实现宏定义与基本函数定义。
#if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS定义了,说明要支持OS了(不限于UCOS).
//当delay_us/delay_ms需要支持OS的时候需要三个与OS相关的宏定义和函数来支持
//首先是3个宏定义:
// delay_osrunning:用于表示OS当前是否正在运行,以决定是否可以使用相关函数
//delay_ostickspersec:用于表示OS设定的时钟节拍,delay_init将根据这个参数来初始哈systick
// delay_osintnesting:用于表示OS中断嵌套级别,因为中断里面不可以调度,delay_ms使用该参数来决定如何运行
//然后是3个函数:
// delay_osschedlock:用于锁定OS任务调度,禁止调度
//delay_osschedunlock:用于解锁OS任务调度,重新开启调度
// delay_ostimedly:用于OS延时,可以引起任务调度.
//本例程仅作UCOSII和UCOSIII的支持,其他OS,请自行参考着移植
//支持UCOSII
#ifdef OS_CRITICAL_METHOD //OS_CRITICAL_METHOD定义了,说明要支持UCOSII
#define delay_osrunning OSRunning //OS是否运行标记,0,不运行;1,在运行
#define delay_ostickspersec OS_TICKS_PER_SEC //OS时钟节拍,即每秒调度次数
#define delay_osintnesting OSIntNesting //中断嵌套级别,即中断嵌套次数
#endif
//支持UCOSIII
#ifdef CPU_CFG_CRITICAL_METHOD //CPU_CFG_CRITICAL_METHOD定义了,说明要支持UCOSIII
#define delay_osrunning OSRunning //OS是否运行标记,0,不运行;1,在运行
#define delay_ostickspersec OSCfg_TickRate_Hz //OS时钟节拍,即每秒调度次数
#define delay_osintnesting OSIntNestingCtr //中断嵌套级别,即中断嵌套次数
#endif
//us级延时时,关闭任务调度(防止打断us级延迟)
void delay_osschedlock(void)
{
#ifdef CPU_CFG_CRITICAL_METHOD //使用UCOSIII
OS_ERR err;
OSSchedLock(&err); //UCOSIII的方式,禁止调度,防止打断us延时
#else //否则UCOSII
OSSchedLock(); //UCOSII的方式,禁止调度,防止打断us延时
#endif
}
//us级延时时,恢复任务调度
void delay_osschedunlock(void)
{
#ifdef CPU_CFG_CRITICAL_METHOD //使用UCOSIII
OS_ERR err;
OSSchedUnlock(&err); //UCOSIII的方式,恢复调度
#else //否则UCOSII
OSSchedUnlock(); //UCOSII的方式,恢复调度
#endif
}
//调用OS自带的延时函数延时
//ticks:延时的节拍数
void delay_ostimedly(u32 ticks)
{
#ifdef CPU_CFG_CRITICAL_METHOD
OS_ERR err;
OSTimeDly(ticks,OS_OPT_TIME_PERIODIC,&err); //UCOSIII延时采用周期模式
#else
OSTimeDly(ticks); //UCOSII延时
#endif
}
//systick中断服务函数,使用ucos时用到
void SysTick_Handler(void)
{
if(delay_osrunning==1) //OS开始跑了,才执行正常的调度处理
{
OSIntEnter(); //进入中断
OSTimeTick(); //调用ucos的时钟服务程序
OSIntExit(); //触发任务切换软中断
}
}
#endif
1.2 使用ucos的delay函数
#if SYSTEM_SUPPORT_OS //如果需要支持OS.
//延时nus
//nus为要延时的us数.
void delay_us(u32 nus)
{
u32 ticks;
u32 told,tnow,tcnt=0;
u32 reload=SysTick->LOAD; //LOAD的值
ticks=nus*fac_us; //需要的节拍数
tcnt=0;
delay_osschedlock(); //阻止OS调度,防止打断us延时
told=SysTick->VAL; //刚进入时的计数器值
while(1)
{
tnow=SysTick->VAL;
if(tnow!=told)
{
if(tnow<told)tcnt+=told-tnow; //这里注意一下SYSTICK是一个递减的计数器就可以了.
else tcnt+=reload-tnow+told;
told=tnow;
if(tcnt>=ticks)break; //时间超过/等于要延迟的时间,则退出.
}
};
delay_osschedunlock(); //恢复OS调度
}
//延时nms
//nms:要延时的ms数
void delay_ms(u16 nms)
{
if(delay_osrunning&&delay_osintnesting==0) //如果OS已经在跑了,并且不是在中断里面(中断里面不能任务调度)
{
if(nms>=fac_ms) //延时的时间大于OS的最少时间周期
{
delay_ostimedly(nms/fac_ms); //OS延时
}
nms%=fac_ms; //OS已经无法提供这么小的延时了,采用普通方式延时
}
delay_us((u32)(nms*1000)); //普通方式延时
}
#else //不用OS时
1.3 不使用ucos的delay函数
//延时nus
//nus为要延时的us数.
void delay_us(u32 nus)
{
u32 temp;
SysTick->LOAD=nus*fac_us; //时间加载
SysTick->VAL=0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
}
//延时nms
//注意nms的范围
//SysTick->LOAD为24位寄存器,所以,最大延时为:
//nms<=0xffffff*8*1000/SYSCLK
//SYSCLK单位为Hz,nms单位为ms
//对72M条件下,nms<=1864
void delay_ms(u16 nms)
{
u32 temp;
SysTick->LOAD=(u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit)
SysTick->VAL =0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
}
1.4 无论是否使用ucos的初始化函数
//初始化延迟函数
//当使用OS的时候,此函数会初始化OS的时钟节拍
//SYSTICK的时钟固定为HCLK时钟的1/8
//SYSCLK:系统时钟
void delay_init()
{
#if SYSTEM_SUPPORT_OS //如果需要支持OS.
u32 reload;
#endif
SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8
fac_us=SystemCoreClock/8000000; //为系统时钟的1/8
#if SYSTEM_SUPPORT_OS //如果需要支持OS.
reload=SystemCoreClock/8000000; //每秒钟的计数次数 单位为M
reload*=1000000/delay_ostickspersec; //根据delay_ostickspersec设定溢出时间
//reload为24位寄存器,最大值:16777216,在72M下,约合1.86s左右
fac_ms=1000/delay_ostickspersec; //代表OS可以延时的最少单位
SysTick->CTRL|=SysTick_CTRL_TICKINT_Msk; //开启SYSTICK中断
SysTick->LOAD=reload; //每1/delay_ostickspersec秒中断一次
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk; //开启SYSTICK
#else
fac_ms=(u16)fac_us*1000; //非OS下,代表每个ms需要的systick时钟数
#endif
}
CM3 内核的处理器,内部包含了一个 SysTick 定时器,SysTick 是一个 24 位的倒计数定时器,当计数到 0 时,将从RELOAD 寄存器中自动重装载定时初值,开始新一轮计数。只要不把它在 SysTick 控制及状态寄存器中的使能位清除,就永不停息。 STM32 的内部 SysTick 来实现延时既不占用中断,也不占用系统定时器。
SysTick 是 MDK 定义了的一个结构体(在 core_m3.h 里面),里面包含 CTRL、LOAD、VAL、CALIB 等 4 个寄存器,
2.1 SysTick->CTRL 的各位定义如图所示:
2.2 SysTick-> LOAD 的定义如图所示:
2.3 SysTick-> VAL 的定义如图 所示:
2.4 SysTick-> CALIB 不常用
2.5 ucos下的SysTick以及如何实现delay_ms与delay_us
ucos 运行需要一个系统时钟节拍(类似 “心跳”),而这个节拍是固定的(由 OS_TICKS_PER_SEC 宏定义设置),比如要求 5ms 一次(即可设置OS_TICKS_PER_SEC=200),在 STM32 上面,一般是由 SysTick 来提供这个节拍,也就是SysTick要设置为 5ms 中断一次,为 ucos 提供时钟节拍,而且这个时钟一般是不能被打断的(否则就不准了)。
因为在 ucos 下 SysTick 不能再被随意更改,如果我们还想利用 SysTick 来做 delay_us 或者delay_ms 的延时,就必须想点办法了,这里我们利用的是时钟摘取法。以 delay_us 为例,比如
delay_us(50),在刚进入 delay_us 的时候先计算好这段延时需要等待的 SysTick 计数次数,这里
为 50 * 9(假设系统时钟为72Mhz,那么SysTick每增加1,就是1/9us)(SysTick每增加9就是1us)(SysTick的频率为div8),然后我们就一直统计SysTick 的计数变化,直到这个值变化了 50*9,一旦检测到变化达到或者超过这个值,就说明延时 50us 时间到了。这样,我们只是抓取 SysTick 计数器的变化,并不需要修改 SysTick 的任何状态,完全不影响 SysTick 作为 UCOS 时钟节拍的功能,这就是实现 delay 和操作系统共用SysTick 定时器的原理。
2.6外部8M晶振原因
Systick 的时钟来自系统时钟 8 分频,正因为如此,系统时钟如果不是 8 的倍数(不能被 8 整除),则会导致延时函数不准确,这也是我们推荐外部时钟选择 8M 的原因。
3.1 delay_init
delay_init 函数使用了条件编译,来选择不同的初始化过程,如果不使用 OS 的时候,只是设置一下 SysTick 的时钟源以及确定 fac_us 和 fac_ms 的值。而如果使用 OS 的时候,则会进行一些不同的配置,这里的条件编译是根据 SYSTEM_SUPPORT_OS 这个宏来确定的,该宏在 sys.h 里面定义。
void delay_init()
{
#if SYSTEM_SUPPORT_OS //如果需要支持OS.
u32 reload;
#endif
SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8
fac_us=SystemCoreClock/8000000; //为系统时钟的1/8
#if SYSTEM_SUPPORT_OS //如果需要支持OS.
reload=SystemCoreClock/8000000; //每秒钟的计数次数 单位为M
reload*=1000000/delay_ostickspersec; //根据delay_ostickspersec设定溢出时间
//reload为24位寄存器,最大值:16777216,在72M下,约合1.86s左右
fac_ms=1000/delay_ostickspersec; //代表OS可以延时的最少单位
SysTick->CTRL|=SysTick_CTRL_TICKINT_Msk; //开启SYSTICK中断
SysTick->LOAD=reload; //每1/delay_ostickspersec秒中断一次
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk; //开启SYSTICK
#else
fac_ms=(u16)fac_us*1000; //非OS下,代表每个ms需要的systick时钟数
#endif
}
在不使用 OS 的时候:fac_us为 us 延时的基数,也就是延时 1us时候SysTick->LOAD 所应设置的值。fac_ms 为 ms 延时的基数,也就是延时 1ms,SysTick->LOAD 所应设置的值。fac_us为 8 位整形数据,fac_ms 为 16 位整形数据。
当使用 OS 的时候,fac_us还是 us 延时的基数,不过这个值不会被写到 SysTick->LOAD寄存器来实现延时,而是通过时钟摘取的办法实现的。而 fac_ms 则代表 ucos自带的延时函数所能实现的最小延时时间(如 delay_ostickspersec=200,那么 fac_ms 就是 5ms)。
3.2 不使用ucos的delay_us
该函数用来延时指定的 us,其参数 nus 为要延时的微秒数。
void delay_us(u32 nus)
{
u32 temp;
SysTick->LOAD=nus*fac_us; //时间加载
SysTick->VAL=0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
}
实现一次延时 nus的操作:
nus 的值,不能太大,必须保证 nus<=(2^24)/fac_us,否则将导致延时时间不准确。 temp&0x01,这一句是用来判断 systick 定时器是否还处于开启状态,可以防止 systick 被意外关闭导致的死循环
3.3 ucos下的delay_us
void delay_us(u32 nus)
{
u32 ticks;
u32 told,tnow,tcnt=0;
u32 reload=SysTick->LOAD; //LOAD的值
ticks=nus*fac_us; //需要的节拍数
tcnt=0;
delay_osschedlock(); //阻止OS调度,防止打断us延时
told=SysTick->VAL; //刚进入时的计数器值
while(1)
{
tnow=SysTick->VAL;
if(tnow!=told)
{
if(tnow<told)tcnt+=told-tnow; //这里注意一下SYSTICK是一个递减的计数器就可以了.
else tcnt+=reload-tnow+told;
told=tnow;
if(tcnt>=ticks)break; //时间超过/等于要延迟的时间,则退出.
}
};
delay_osschedunlock(); //恢复OS调度
}
3.4 不使用ucos的delay_ms
void delay_ms(u16 nms)
{
u32 temp;
SysTick->LOAD=(u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit)
SysTick->VAL =0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
}
注意:单次延时时间不能超过1864ms,原因如下:
同delay_us大致一样,LOAD 仅仅是一个 24bit 的寄存器,延时的 ms 数不能太长。否则超出了 LOAD 的范围,高位会被舍去,导致延时不准。最大延迟 ms 数可以通过公式:nms<=0xffffff81000/SYSCLK 计算。SYSCLK 单位为 Hz,nms 的单位为 ms。如果时钟为 72M,那么 nms 的最大值为 1864ms。超过这个值,建议通过多次调用 delay_ms 实现,否则就会导致延时不准确。
3.5 ucos下的delay_ms
void delay_ms(u16 nms)
{
if(delay_osrunning&&delay_osintnesting==0) //如果OS已经在跑了,并且不是在中断里面(中断里面不能任务调度)
{
if(nms>=fac_ms) //延时的时间大于OS的最少时间周期
{
delay_ostimedly(nms/fac_ms); //OS延时
}
nms%=fac_ms; //OS已经无法提供这么小的延时了,采用普通方式延时
}
delay_us((u32)(nms*1000)); //普通方式延时
}
该函数中,delay_osrunning 是 OS 正在运行的标志,delay_osintnesting 则是 OS 中断嵌套次数,必须 delay_osrunning 为真,且 delay_osintnesting 为 0 的时候,才可以调用 OS 自带的延时函数进行延时(可以进行任务调度),delay_ostimedly 函数就是利用 OS 自带的延时函数,实现任务级延时的,其参数代表延时的时钟节拍数(假设 delay_ostickspersec=200 ,那么delay_ostimedly (1),就代表延时 5ms)。
当 OS 还未运行的时候,我们的 delay_ms 就是直接由 delay_us 实现的,OS 下的 delay_us可以实现很长的延时而不溢出!,所以放心的使用 delay_us 来实现 delay_ms,不过由于 delay_us的时候,任务调度被上锁了,所以还是建议不要用 delay_us 来延时很长的时间,否则影响整个系统的性能。
当 OS 运行的时候,我们的 delay_ms 函数将先判断延时时长是否大于等于 1 个 OS 时钟节拍(fac_ms),当大于这个值的时候,我们就通过调用 OS 的延时函数来实现(此时任务可以调度),不足 1 个时钟节拍的时候,直接调用 delay_us 函数实现(此时任务无法调度)。