浅聊深度学习在金融风险管理领域的应用

        金融市场上的主体都面临着收益和损失的不确定性,金融产品和工具的多样化趋势,都体现着风险管理的重要性。全球市场在过去的几十年间发生了数次规模巨大的金融危机事件,例如影响全球股市的1987年的黑色星期一事件、1997年的亚洲金融危机、2008年的美国次贷危机以及全球金融危机。各家公司也都面临着各种风险。无处不在的风险日益成为悬在金融市场主体上的一把“达摩克利斯之剑”。

        与此同时,计算机技术发展迅速,数据信息的多样性以及数据分析技术的应用,给具有大数据特征的金融风险管理分析带来了机遇和挑战,人工智能开始逐步应用于金融风险管理领域,引导着行业的变革。而在演进的发展过程中,深度学习是解决人工智能应用能够发展的关键。金融市场是一个嘈杂的、具有非参数特点的动态系统,对金融数据进行分析与预测是一项极具挑战性的工作。但是,传统的计量方程模型或者是带有参数的模型已经不具备对复杂、高维度、带有噪音的金融市场数据序列进行分析建模的能力,而且传统的人工神经网络方法也无法准确分析建模如此复杂序列的数据,同时传统的机器学习的方法又十分依赖建模者的主观设计,很容易导致模型风险。这些方法在应用过程中存在着过拟合、收敛慢等问题。而深度学习方法为金融数据分析提供了一个新的思路。

       不同于传统方法,深度学习模型不需要对收益率的分布进行假设和方差的估算,以深度神经网络为基本结构,基于真实事件的发生概率建立了深度学习模型,通过模拟价格的深层信息的D维数据空间局部特征生成一个低维的价格空间,从而对价格进行预测。该模型不仅能够应用与分析样本外时间的最优卖出价格和最优买入价格的联合分布,也能够对限价指令簿的其他行为进行建模分析,适用于对任一D维空间数据进行分析建模。

       深度置信网络在金融风险管理中的应用主要是对风险进行度量和预警。为了解决有监督学习问题,使受限波尔兹曼机能够较大程度地提取数据的行为特征,利用单户企业财务数据,建立了财务危机预警模型,相较于其他方法预测更为准确。基于深度置信网络模型,可以训练生成一个五层的深度学习交易欺诈侦测系统,经过对数据的一系列处理,检验了模型的交易欺诈识别效果。

      金融科技的不断发展给金融风险管理领域带来了机遇,同时深度学习在金融风险管理领域也面临着诸多挑战。

       第一,深度学习的应用面临着程序出错的风险,如果发生,那么基于此的数据分析就容易得到有误的结论。在金融风险管理过程中,基于对大量数据分析的结果,进而对风险进行预测和评估分析。如果程序发生了错误,研究者就无法做出正确的风险管理决策,进而遭受损失;

       第二,深度学习模型的正确运用需要研究者对深度学习模型具备深刻的理解,并且能够结合在金融风险管理领域的专业理论知识。由于模型的构建与优化较为复杂,研究者对金融市场及风险管理理论的准确认识极为重要,不了解相关理论知识,而单纯应用深度学习无法发挥模型的作用;

        第三,深度学习模型的发展及推广应用使得许多金融传统业务的运作模式发生了改变,使金融监管面临着新的挑战。现有的金融监管体系下难以界定由于金融科技故障进而导致的风险事件责任。这些都使得深度学习模型的应用存在一些问题。

         首先,需要正确认识金融系统中的深度学习运用,完善模型程序设计的原则及流程,尽量降低程序出现错误的概率;其次,完善深度学习的应用体系,制定相关的维护技术措施、人力措施,引进及培养相应领域的人才,加快转型;最后,完善深度学习在金融风险管理领域应用的监督措施,确保出现由于人工智能应用导致的重大问题或隐患时,具备相应的准则来界定风险处置责任。深度学习模型的应用在相关领域的完善也必将推动金融风险管理领域的快速发展。

你可能感兴趣的:(专家之道,独家观点,人工智能)