基于elasticsearch搜索引擎的微博搜索

注:本博客需要读者具备初级的ES技能即可,了解index,type,document等概念。

一、搭建elasticsearch、kibana服务器

1、docker安装

可以自行百度搜索docker安装,这里就不再赘述。最好将源换成aliyun源,下载快

2、下载并启动elasticsearch、kibana

拉取elasticsearch, kibana镜像

#这里选择6.X版本,稳定,随大流嘛
docker pull elasticsearch:6.8.3
docker pull kibana:6.8.3

查看下载镜像的image_id

docker images

基于elasticsearch搜索引擎的微博搜索_第1张图片
启动elasticsearch, kibana容器

docker run -e ES_JAVA_OPTS="-Xms256m -Xmx256m" -d -p 9200:9200 -p 9300:9300 --name ES 1d0fd79266e6

docker run -e ELASTICSEARCH_URL=http://192.168.0.130:9200 -d -p 5601:5601 --name kibana 388661dcd03e

启动成功
在这里插入图片描述
浏览器输入http://192.168.0.130:5601/app/kibana#/dev_tools/console?_g=()出现kibana客户端界面。

二、SpringBoot项目搭建

1、骨架搭建

SpringBoot的版本是2.1.6 核心依赖 pom.xml

<dependencies>
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-data-jdbcartifactId>
        dependency>
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-data-redisartifactId>
        dependency>
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-thymeleafartifactId>
        dependency>
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-webartifactId>
        dependency>
        <dependency>
            <groupId>org.mybatis.spring.bootgroupId>
            <artifactId>mybatis-spring-boot-starterartifactId>
            <version>2.1.0version>
        dependency>

        
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-data-elasticsearchartifactId>
        dependency>
        <dependency>
            <groupId>io.searchboxgroupId>
            <artifactId>jestartifactId>
            <version>5.3.3version>
        dependency>
        <dependency>
            <groupId>net.java.dev.jnagroupId>
            <artifactId>jnaartifactId>
            <version>4.5.1version>
        dependency>
        

        <dependency>
            <groupId>org.apache.commonsgroupId>
            <artifactId>commons-lang3artifactId>
            <version>3.7version>
        dependency>

        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-devtoolsartifactId>
            <scope>runtimescope>
            <optional>trueoptional>
        dependency>
        <dependency>
            <groupId>mysqlgroupId>
            <artifactId>mysql-connector-javaartifactId>
            <version>5.1.47version>
        dependency>
        <dependency>
            <groupId>org.projectlombokgroupId>
            <artifactId>lombokartifactId>
            <optional>trueoptional>
        dependency>
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-testartifactId>
            <scope>testscope>
        dependency>
    dependencies>

WeiboV 实体类
这是储存在MySQL中的原始数据,查询结果我们需要新增部分字段,所以创建了WeiboVSearch实体类

@NoArgsConstructor
@AllArgsConstructor
@Data
public class WeiboV implements Serializable {
    private Integer id;
    private String vId;
    private String vName;
    private String vIntro;
    private Integer concernAmount;
    private Integer fansAmount;
    private String sex;
    private Integer lv;
    private String imagePath;
}

WeiboVSearch 实体类
此处,为了简便只新增了相关性得分字段 hotScore

@NoArgsConstructor
@AllArgsConstructor
@Data
public class WeiboVSearch implements Serializable {
    private Integer id;
    private String vId;
    private String vName;
    private String vIntro;
    private Integer concernAmount;
    private Integer fansAmount;
    private String hotScore;
    private Integer lv;
    private String imagePath;
}

根据实体类的字段构建elasticsearch的数据结构,在kibana客户端设计好数据结构并运行。

//这里使用ik分词器
PUT weibo
{
  "mappings": {
    "WeiboV": {
      "properties": {
        "id": {
          "type": "keyword",
          "index": true
        },
        "vId": {
          "type": "keyword",
          "index": true
        },
        "vName":{
          "type": "text",
          "analyzer": "ik_smart",
          "index": true
        },
        "vIntro": {
          "type": "text",
          "analyzer": "ik_smart",
          "index": true
        },
        "concernAmount": {
          "type": "keyword"
        },
        "fansAmount": {
          "type": "keyword"
        },
        "hotScore": {
          "type": "double"
        },
        "lv": {
          "type": "keyword"
        },
        "imagePath": {
          "type": "keyword",
          "index": false
        }
      }
    }
  }  
}

将mysql中的数据库导入elasticsearch,我写在了测试类中。
BeanUtils是Spring中的工具类,可以将WeiboV类中的数据赋值到WeiboVSearch中。
JestClient是Elasticsearch客户端,类似于操作Redis的Jedis客户端。(ES官网推荐6.X版本使用JestClient)

@RunWith(SpringRunner.class)
@SpringBootTest
public class WeiboEsFansApplicationTests {
    private static final String ES_INDEX_NAME = "weibo";
    private static final String ES_TYPE_NAME = "WeiboV";
    @Autowired
    private WeiboVService weiboVService;
    @Autowired
    private JestClient jestClient;
    
    @Test
    public void insertES() {
    	//获取mysql中所有微博大V数据
        List<WeiboV> weiboVAll = weiboVService.getWeiboVAll();
        List<WeiboVSearch> weiboVSearches = new ArrayList<>();
        for (WeiboV weiboV : weiboVAll) {
            WeiboVSearch weiboVSearch = new WeiboVSearch();
            //将WeiboV类中的数据赋值到WeiboVSearch
            BeanUtils.copyProperties(weiboV, weiboVSearch);
            //再添加到集合中
            weiboVSearches.add(weiboVSearch);
        }
        for (WeiboVSearch weiboVSearch : weiboVSearches) {
            Index index = new Index.Builder(weiboVSearch).index(ES_INDEX_NAME).type(ES_TYPE_NAME).id(weiboVSearch.getId() + "").build();
            try {
            	//执行构建数据结构命令
                jestClient.execute(index);
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        System.out.println("导入ES成功");
    }
}

导入成功后,我们可以在kibana客户端测试查询,可以得到结果。
multi_match可以匹配多个值,query就是需要进行查找的值,fields是需要对应的字段。

GET weibo/WeiboV/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "multi_match": {
            "query": "星,霹雳火",
            "fields": [
                "vName",
                "vIntro"
              ]
          }
        }
      ]
    }
  }
}

查询结果如下:
基于elasticsearch搜索引擎的微博搜索_第2张图片
controller(只列出了核心搜索部分)

@Controller
public class WeiboVController {
    private final WeiboVSearchService weiboVSearchService;
    @Autowired
    public WeiboVController(WeiboVSearchService weiboVSearchService) {
        this.weiboVSearchService = weiboVSearchService;
    }
    @GetMapping("/weiboVSearch/{searchParam}")
    public String weiboVSearch(@PathVariable SearchParam searchParam, Model model) {
        List<WeiboVSearch> weiboVSearches = weiboVSearchService.weiboVSearch(searchParam);
        model.addAttribute("weiboVSearches", weiboVSearches);
        return "indexSearch";
    }
}

service部分

List<WeiboVSearch> weiboVSearch(SearchParam searchParam);

serviceImpl部分
这里,将上面卸载kibana的查询json转换为java,注释比较清楚可以对比起来看。

@Service
public class WeiboVSearchServiceImpl implements WeiboVSearchService {
    private static final String ES_INDEX_NAME = "weibo";
    private static final String ES_TYPE_NAME = "WeiboV";
    @Autowired
    private JestClient jestClient;
    @Override
    public List<WeiboVSearch> weiboVSearch(SearchParam searchParam) {
        String searchKeyWord = searchParam.getSearchKeyWord();
        //jest的dsl工具
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(null);
        //bool
        BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder();
        //must
        //multi_match 匹配多个字段
        if (StringUtils.isNotBlank(searchKeyWord)) {
            MultiMatchQueryBuilder multiMatchQueryBuilder = new MultiMatchQueryBuilder(searchKeyWord);
            multiMatchQueryBuilder.field("vName");
            multiMatchQueryBuilder.field("vIntro");
            boolQueryBuilder.must(multiMatchQueryBuilder);
        }
        //query
        searchSourceBuilder.query(boolQueryBuilder);
        //from, size 可以用来做分页
        searchSourceBuilder.from(0);
        searchSourceBuilder.size(20);
        String dslStr = searchSourceBuilder.toString();

        List<WeiboVSearch> weiboVSearches = new ArrayList<>();
        Search search = new Search.Builder(dslStr).addIndex(ES_INDEX_NAME).addType(ES_TYPE_NAME).build();
        SearchResult searchResult;
        try {
            searchResult = jestClient.execute(search);
            List<SearchResult.Hit<WeiboVSearch, Void>> resultHits = searchResult.getHits(WeiboVSearch.class);
            for (SearchResult.Hit<WeiboVSearch, Void> resultHit : resultHits) {
                WeiboVSearch source = resultHit.source;
                Double score = resultHit.score;
                System.out.println("相关性算分:" + score);
                source.setHotScore(score + "");
                //sort
                searchSourceBuilder.sort("hotScore", SortOrder.ASC);
                weiboVSearches.add(source);
                System.out.println(source);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        return weiboVSearches;
    }
}

最后的效果图:不是不整齐,用了瀑布流布局就会这样错落排列感觉更好看

搜索特种兵就会按照相关性得分的降序排列,相关性最高的在第一个依次往后。
基于elasticsearch搜索引擎的微博搜索_第3张图片
图片全部储存在fastDFS分布式文件上,如果对fastDFS不熟悉可以参考前面关于fastDFS文件系统搭建的文章。
最后附上GitHub地址,想看详细代码的可以clone下来跑一跑,sql脚本也在GitHub上,如果觉得文章还能看得上眼还请点个赞呗。

注:所有数据信息来源于网上,如有任何问题联系作者删除。

你可能感兴趣的:(elasticsearch)