- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- 深圳传音控股AI算法岗内推
飞300
人工智能pythonjava业界资讯
1扎实的数学基础,熟练掌握机器学习相关的数学知识。2熟悉常用的机器学习算法,掌握常用的深度学习模型与编程实践。3熟悉Pytorch或TensorFlow等深度学习框架,有一定项目经验。4良好的沟通协调能力,执着的专业精神。5参与部门AI创新项目,包括自动化测试平台、BPM流程管理等项目开发登录链接:transsion.zhiye.com/campus/jobs填写我的推荐码:EVHPB3投递,简历
- 基于NLP的客户意见分析:从数据到洞察
Echo_Wish
Python算法Python笔记自然语言处理人工智能
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- 深度神经网络——决策树的实现与剪枝
知来者逆
人工智能dnn决策树人工智能神经网络深度学习机器学习
概述决策树是一种有用的机器学习算法,用于回归和分类任务。“决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。这是决策树的快速定义,但让我们深入了解决策树的工作原理。更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。决策树的结构决策树的
- 【Gaussian Model】高斯分布模型
HP-Succinum
机器学习机器学习算法人工智能
目录高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)1.高斯分布简介2.高斯分布模型用于异常检测(1)训练阶段:估计数据分布(2)检测阶段:计算概率判断异常点3.示例代码4.高斯分布异常检测的优缺点优点缺点5.适用场景6.结论高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)在数据分析和机器学习任务中,异常检测(
- 深入浅出地理解-随机森林与XGBoost模型
HP-Succinum
机器学习随机森林集成学习机器学习
目录一、决策树的不足与集成学习的优势1.1决策树的缺点1.2集成学习:通过集成多个模型提升稳定性二、随机森林:通过多棵决策树减少方差2.1随机森林的基本原理2.2随机森林的优势2.3随机森林的参数调整三、XGBoost:高效且强大的Boosting方法3.1Boosting的基本原理3.2XGBoost的优化3.3XGBoost的优点四、随机森林与XGBoost的对比五、总结在机器学习的实战中,决
- 芯科科技通过全新并发多协议SoC重新定义智能家居连接
电子科技圈
SiliconLabs智能家居边缘计算mcu物联网iot人工智能机器学习
MG26系列SoC现已全面供货,为开发人员提供最高性能和人工智能/机器学习功能致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商SiliconLabs(亦称“芯科科技”,NASDAQ:SLAB),日前宣布其MG26系列无线片上系统(SoC)现已通过芯科科技及其分销合作伙伴全面供货。作为业界迄今为止最先进、高性能的Matter和并发多协议解决方案,MG26SoC的闪存和RAM容量是芯科科技
- 【Python编程】Python交互式应用框架巅峰对决 —— Streamlit vs Gradio
木亦汐丫
Python编程StreamlitGradioJupyterHuggingFacePandasPyTorchTensorFlow
Streamlit和Gradio都是非常受欢迎的Python交互式应用框架,但在构建Python交互式Web应用时该如何选择?它们各有独特的设计理念和适用场景,以下是基于功能特性、开发效率和应用场景的对比分析:一、核心定位与功能对比特性GradioStreamlit核心目标快速部署机器学习模型交互界面构建数据科学和复杂交互应用输入/输出支持支持文本、图像、音频、视频等基础组件支持更丰富的交互组件(
- 机器学习平台系列(一) - 初探 Jupyter Notebook 认证机制
窝窝和牛牛
机器学习平台PythonJupyterNotebookJupyterHub安全多租户
最近准备调研下JupyterNotebook的单用户安全机制(认证)以及如何实现多租户,以便集成到公司的云平台,进而作为基于大数据平台的机器学习平台的一部分。1.问题分析数据分析以及算法团队的同学使用JupyterNotebook进行数据分析和建模等工作,其工作流程如下所示:业务部门以组为单位申请一台物理服务器搭建Python环境,启动JupyterNotebook,每个同学创建自己的工程,进行代
- 《机器学习实战:从数据清洗到云端部署的可视化进阶指南(三)》
庸俗今天不摸鱼
机器学习人工智能python
▍前言:阶段核心突破当前已完成模型开发与优化升级核心任务,成功将理论模型转化为工业级解决方案。本阶段基于前期标准化数据,实现从基础模型构建到高性能算法迭代的跨越式发展。▍章节回顾:攻坚与优化成果3.模型开发阶段算法实现:逻辑回归:搭建分类基线(LogisticRegression,准确率基准)支持向量机:对比线性核与RBF核性能差异(F1-score提升12%)K近邻:动态优化邻居数(k=5时验证
- 2025全球机器学习技术大会即将召开:汇聚全球AI顶尖专家,共话未来技术趋势
量子位
由CSDN与Boolan联合主办的「2025全球机器学习技术大会」(MLSummit2025)将于4月18日至19日在上海虹桥西郊庄园丽笙大酒店隆重举行。本次大会汇聚全球AI领域的顶级学者、行业领袖和技术专家,共同探讨大模型技术演进、智能体、代码大模型、多模态技术等前沿话题,为参会者提供全方位的技术解读与行业洞察。大会亮点:顶级嘉宾阵容,前沿议题聚焦本次大会的主会环节将邀请多位全球AI领域的重量级
- 详解:Grok中文版 _Grok 3 国内中文版本在线使用
人工智能
GrokAI是由XAI公司推出的一款尖端人工智能系统。作为该公司核心技术之一,GrokAI专注于推动人工智能在各行各业的实际应用,尤其在数据分析、自然语言处理(NLP)、自动化决策、机器学习等领域表现出色。Grok的最大亮点在于其强大的数据处理能力。它能够高效地从大量复杂数据中提取有价值的信息,并做出精准预测。借助深度学习与强化学习等先进技术,GrokAI具备自我学习的能力,可以通过不断的训练来优
- 【好书推荐7】《机器学习平台架构实战》
是Yu欸
粉丝福利机器学习架构人工智能awsk8sdocker
【好书推荐7】《机器学习平台架构实战》写在最前面《机器学习平台架构实战》编辑推荐内容简介作者简介目录前言本书读者内容介绍充分利用本书下载示例代码文件下载彩色图像本书约定你好呀!我是是Yu欸2024每日百字篆刻时光,感谢你的陪伴与支持~欢迎一起踏上探险之旅,挖掘无限可能,共同成长!写在最前面感谢大家的陪伴和支持,2024年争取每周二开展粉丝福利送书活动,欢迎关注~第7波福利感谢清华出版社的大力支持本
- Python 机器学习 基础 之 模型评估与改进 【评估指标与评分】的简单说明
仙魁XAN
Python机器学习基础+实战案例python机器学习模型评估与改进评估指标与评分召回率
Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明目录Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明一、简单介绍二、评估指标与评分1、牢记最终目标2、二分类指标1)错误类型2)不平衡数据集3)混淆矩阵4)考虑不确定性5)准确率-召回率曲线6)受试者工作特征(ROC)与AUC3、多分类指标4、回归指标5、在模型选择中使用评估指标附录一、参考文献一、简单介绍Py
- 基于hive的电信离线用户的行为分析系统
赵谨言
论文经验分享毕业设计
标题:基于hive的电信离线用户的行为分析系统内容:1.摘要随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于Hive的电信离线用户行为分析系统。通过收集电信用户的通话记录、上网行为、短信使用等多源数据,利用Hive数据仓库工具进行数据存储和处理,采用数据挖掘和机器学习算法对用户行为进行分析。实验结果表明,该系统
- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- 【大模型学习】第八章 深入理解机器学习技术细节
好多渔鱼好多
AI大模型机器学习AI大模型人工智能
目录引言一、监督学习(SupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:房价预测二、无监督学习(UnsupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:客户细分三、强化学习(ReinforcementLearning)1.定义与工作原理2.常见应用场景3.应用场景示例:游戏AI四、集成学习(EnsembleLearning)1.
- Milvus 数据批量导入实战:Python代码解析
修破立生
Milvusmilvuspython人工智能
1引言在处理大规模数据的存储和检索时,向量数据库逐渐成为一种热门的解决方案。Milvus作为一款高性能的向量数据库,在人工智能、机器学习等领域有着广泛的应用。本文将介绍如何使用Python代码将数据批量导入到Milvus数据库中,通过实际的代码示例来帮助大家理解导入过程和相关的技术要点。2代码功能概述我们的代码主要实现了从本地文件读取数据,并将其批量导入到Milvus数据库的功能。代码涉及到命令行
- L1与L2正则化:防止过拟合的双刃剑
XianxinMao
人工智能人工智能机器学习算法
标题:L1与L2正则化:防止过拟合的双刃剑文章信息摘要:L1和L2正则化是防止机器学习模型过拟合的两种关键技术。L1正则化(Lasso)通过将不重要的特征权重归零来实现特征选择,适用于稀疏模型和高维数据集,但可能导致欠拟合。L2正则化(Ridge)则通过减少权重的大小来防止过拟合,适用于处理高度相关特征和噪声数据,提高模型稳定性。两者各有优势,选择哪种正则化技术取决于数据集特性和模型需求。有时,结
- 手写数字识别项目:从原理到实践
北屿升:
微信新浪微博facebook微信公众平台百度
在当今数字化时代,手写数字识别作为模式识别和人工智能领域的重要应用,有着广泛的用途,如邮政信封上的邮编识别、银行支票上的数字处理等。本文将详细介绍手写数字识别项目的相关内容,包括原理、数据集、实现步骤和应用前景。一、手写数字识别原理手写数字识别主要依赖于模式识别和机器学习技术。其基本原理是将手写数字的图像转换为计算机能够处理的数字信号,然后通过特征提取和分类算法来判断该数字的具体值。常用的特征提取
- Python从0到100(十八):面向对象编程应用
是Dream呀
python开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 智能云图库项目实战(4)---空间模块
rain雨雨编程
项目实战权限管理锁机制事务云图库Spring
♂️个人主页:@rain雨雨编程微信公众号:rain雨雨编程✍作者简介:持续分享机器学习,爬虫,数据分析希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录本节重点一、需求分析二、方案设计空间的必要性空间库表设计1.空间表2、图片表公共图库和空间的关系三、后端开发空间管理1、数据模型2、基础服务开发3、接口开发用户创建私有空间1、创建空间流程2、创建空间服务扩展知
- 【西瓜书《机器学习》七八九章内容通俗理解】
游戏乐趣
人工智能机器学习人工智能
第七章:贝叶斯分类器7.1贝叶斯决策论基础核心概念:贝叶斯分类器是基于概率来做分类决策的。简单来说,就是根据已知的一些条件,去计算每个类别出现的概率,然后选择概率最大的那个类别作为分类结果。就好比你在猜一个盒子里装的是红球还是蓝球,你可以根据之前从这个盒子里摸球的一些经验(比如摸出红球的次数多),来判断这次盒子里更有可能是红球还是蓝球。例子:假如你要判断一幅图片是猫还是狗。你知道在所有的图片数据里
- 机器学习笔记
有涯小学生
赵卫东机器学习笔记机器学习人工智能
1概述1.1简介机器学习(MachineLearning)是计算机科学的子领域,也是人工智能的一个分支和实现方式。“对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序在从经验E学习。”(汤姆·米切尔(TomMitchell),1997,MachineLearning)1.2机器学习、人工智能、数据挖掘从本质上看,数据科学的目标是通过处理各
- 机器学习—赵卫东阅读笔记(一)
走在考研路上
深度学习了解机器学习笔记人工智能
第一章:机器学习基础1.1.2机器学习主要流派1.符号主义2.贝叶斯分类——基础是贝叶斯定理3.联结主义——源于神经学,主要算法是神经网络。——BP算法:作为一种监督学习算法,训练神经网络时通过不断反馈当前网络计算结果与训练数据之间的误差来修正网络权重,使误差足够小。4.进化计算——通过迭代优化,找到最佳结果。——具有自组织、自适应、自学习的特性,能够有效处理传统优化算法难以解决的复杂问题(例如N
- Python在机器学习与数据分析领域的深度应用:从基础到实战
CodeJourney.
python算法
在当今数字化时代,数据如同宝贵的矿产资源,蕴含着无尽的价值等待挖掘。Python作为一门强大而灵活的编程语言,凭借其丰富的库和工具,在机器学习和数据分析领域扮演着举足轻重的角色。它不仅为数据科学家和开发者提供了高效处理和分析数据的手段,还助力构建各种智能模型,实现精准预测和决策支持。本文将深入探讨Python在机器学习和数据分析领域的应用,涵盖机器学习基础概念、Pandas库的使用技巧、数据分析实
- Python神器 Jupyter Notebook
懒大王爱吃狼
pythonpython开发语言Python基础python学习服务器
JupyterNotebook是Python领域中备受推崇的一款神器,以下是对其的详细介绍:一、概述JupyterNotebook是一款开放源代码的Web应用程序,它允许用户创建和共享包含实时代码、方程式、可视化和叙述文本的文档。它适用于数据分析、可视化、机器学习等多种场景,尤其在数据科学领域中广受欢迎。二、安装与配置JupyterNotebook可以通过多种方式进行安装,其中最常见的是通过安装A
- 费曼学习法11 - NumPy 的 “线性代数” 之力:矩阵运算与应用 (应用篇)
修昔底德
Python费曼学习法线性代数学习numpypython人工智能深度学习
第六篇:NumPy的“线性代数”之力:矩阵运算与应用(应用篇)开篇提问:考虑一个实际问题:图像的旋转。当你使用图像编辑软件旋转照片时,背后是什么在驱动图像像素的精确移动?答案是线性代数。图像可以表示为数值矩阵,而旋转、缩放、剪切等图像变换,都可以通过矩阵运算来实现。线性代数不仅是图像处理的基石,也在机器学习、物理模拟、工程计算等众多领域扮演着核心角色。它提供了一套强大的数学工具,用于描述和解决多维
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》