python实现歌曲相似度比较(超详细,总有收获)

python实现歌曲相似度比较

2019/9/20
最近学信号与系统,想着弄个小项目来提高学习兴趣。特此记录一下。
这是大概想到的准备工作,一边推进,一边学吧!!!
python实现歌曲相似度比较(超详细,总有收获)_第1张图片
2019/9/21

频域信号处理

FFT变换所得的复数的含义:

  • 下标为0的实数表示时域信号的直流部分
  • 下标为i的复数为a+bj表示时域信号中周期为N/i个取样值的正弦波和余弦波的成分,其中a表示余弦波形的成分,b表示正弦波形的成分
  • 复数的模的两倍为对应频率的余弦波的振幅
  • 复数的辐角表示对应频率的余弦波的相位
import numpy as np
from scipy.fftpack import fft, ifft
import matplotlib.pyplot as plt
from matplotlib.pylab import mpl
x = np.arange(0, 2*np.pi, 2*np.pi/128)
y = 0.3*np.cos(x) + 0.5*np.cos(2*x+np.pi/4) + 0.8*np.cos(3*x-np.pi/3) + np.sin(4*x) + np.cos(x)
yf = fft(y)/len(y)
print(np.array_str(yf[:5], suppress_small=True))
for ii in range(0, 5):
    print(np.abs(yf[ii]), np.rad2deg(np.angle(yf[ii])))

运行上述程序可以观察得到以上结论

合成时域信号

需要着重解释的是多个余弦信号合成任意时域信号的过程:

FFT转换得到的N个复数组成的数组A, A i A_i Ai表示第 i i i个子信号,其中 i = 0 i=0 i=0的子信号表示直流信号,且 R e ( A i ) Re(A_i) Re(Ai)表示直流信号的振幅。 2 × R e ( A i ) = A m p l i t u d e ( s i g n a l s i n ) 2 \times Re(A_i) = Amplitude(signal_{sin}) 2×Re(Ai)=Amplitude(signalsin)
2 × I m ( A i ) = A m p l i t u d e ( s i g n a l c o s ) 2 \times Im(A_i) = Amplitude(signal_{cos}) 2×Im(Ai)=Amplitude(signalcos)
利用前 k k k个自信号合成过程用数学表达式表示:
2 × ∑ i = 1 k { R e ( A i ) c o s ( i t ) − I m ( A i ) s i n ( i t ) } + R e ( A 0 ) 2\times \sum_{i=1}^{k}\{Re(A_i)cos(it)-Im(A_i)sin(it)\}+Re(A_0) 2×i=1k{Re(Ai)cos(it)Im(Ai)sin(it)}+Re(A0)
代码如下所示

import numpy as np
from scipy.fftpack import fft, ifft
import matplotlib.pyplot as plt
from matplotlib.pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']  #显示中文
mpl.rcParams['axes.unicode_minus'] = False  #显示负号
# x = np.arange(0, 2*np.pi, 2*np.pi/128)
# y = 0.3*np.cos(x) + 0.5*np.cos(2*x+np.pi/4) + 0.8*np.cos(3*x-np.pi/3) + np.sin(4*x) + np.cos(x)
# yf = fft(y)/len(y)
# print(np.array_str(yf[:5], suppress_small=True))
# for ii in range(0, 5):
#     print(np.abs(yf[ii]), np.rad2deg(np.angle(yf[ii])))
def triangle_wave(size):
    x = np.arange(0, 1, 1.0/size)
    y = np.where(x < 0.5, x, 0)
    y = np.where(x >= 0.5, 1-x, y)
    return x, y
###
def fft_comnbine(bins, n, loops):
    length = len(bins)*loops
    data=np.zeros(length)
    index=loops*np.arange(0, 2*np.pi, (2*np.pi)/length)

    for k, p in enumerate(bins[:n]):
        if k != 0:
            p *= 2
        ###合成时域信号的过程
        data += np.real(p)*np.cos(k*index)
        data -= np.imag(p)*np.sin(k*index)
    return index, data
fft_size = 256
###对三角波进行FFT
x, y = triangle_wave(fft_size)
fy = fft(y)/fft_size
loops = 4
y = np.tile(y, (1, loops))
print(y.shape)
y.shape = (fft_size*loops, )#画图python的特殊癖好
###
fig, axes = plt.subplots(2, 1, figsize=(8, 6))
eps = 1e-5
# axes[0].plot(np.clip(20*np.log10(np.abs(fy[:20])+eps), -120, 120), "o")
axes[0].plot(np.abs(fy[:20]), "o")
axes[0].set_xlabel(u"频率窗口(frequency bin)")
axes[0].set_ylabel(u"幅值(dB)")
axes[1].plot(y, label=u"原始三角波", linewidth = 2)
for ii in [0, 1, 3, 5, 7, 9]:
    index, data = fft_comnbine(fy, ii+1, loops)
    axes[1].plot(data, label="N=%s" % ii, alpha=0.6)
print(index[:20])
axes[1].legend(loc="best")
plt.show()
理论部分后面学了信号与系统在深究吧

哈——现在的我已经学完信号与系统了,回复几个一开始学习遇到的问题。

  1. 复数的模的两倍为什么对应频率的余弦波的振幅?
    ans:若 x ( t ) x(t) x(t)为实信号,那么
    由傅里叶变换:
    f n = F { x ( t ) } f_n = \mathscr{F}\{x(t)\} fn=F{x(t)}
    得到推导过程中运用了欧拉公式使得余弦波的振幅乘上1/2,而相位不变。

  2. 为什么周期为N的离散信号,它的傅里叶变换的周期也是N?
    ans:这个就是离散信号的傅里叶变换的周期性。可以在奥本海默的信号与系统的傅里叶性质表看到。

顺便提及奈奎斯特频率
在采样定理中,采样频率必须大于 2 ω m 2 \omega_m 2ωm,这个 2 ω m 2\omega_m 2ωmj就称作奈奎斯特频率,目的是防止采样信号的频率防止重叠,其中 ω m \omega_m ωm为原始信号的频域 ω \omega ω的最大值。

利用pydub和ffmpeg处理音频

写在前面:
RuntimeWarning: Couldn’t find ffmpeg or avconv - defaulting to ffmpeg, but may not work 解决办法——ffmpeg的bin 目录添加到path变量里,注意是path变量而不仅仅是简单的加到系统变量中!!!然后重启。

一、将mp3转换为wav格式,并将歌曲划分为几个部分

说在前面
1.将歌曲划分为几部分主要是为了将特征的时间顺序体现出来
2. wav:非压缩文件格式。
3.mp3:压缩文件格式。
代码如下:

tail, track = os.path.split(mp3_path)
song_name = track.split('.')
wav_path = os.path.join(tail, 'w_session', song_name[0]+'.wav')
sound = AudioSegment.from_file(mp3_path, format='mp3')
sound.export(wav_path, format='wav')

获取wav文件信息:

w = wave.open(wav_path)
params = w.getparams()
print(params)
#声道数、量化位数(byte)、采样频率、采样点数 
nchannels, sampwidth, framerate, nframes = params[:4]
t = np.arange(0, nframes)*(1/framerate)#文件时间
strData = w.readframes(nframes)#读取音频,字符串格式
waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为int
#waveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化
waveData = np.reshape(waveData,[nchannels, nframes])#双通道数

划分歌曲

for ii in range(nchannels):
    for jj in range(0, 4):
        end_time = start_time + chunk[jj]
        blockData = waveData[0, start_time*framerate:end_time*framerate]
        start_time = end_time

二、音频特征提取

按照处理空间区分

  • 要提取的特征 详情请点击:
    时域特征:
    线性预测系数、过零率
    频域特征:
    Mel系数、LPC倒频谱系数、熵特征、光谱质心
    时频特征:
    小波系数
  • TOOLS:pyAudioAnalysis
    下载以及安装方法:安装方法
    个人感觉这个工具包满新的,github上有各种issues。issues详见

同时有一篇论文有对这个工具包有详细的描述:论文

下面摘抄一部分:
Feature Extraction
Audio Features

  1. the audio signal is first divided into short-term windows (frames) and for each frame all 34 features are calculated. This results in a sequence of short-term feature vectors of 34 elements each. Widely accepted short-term window sizes are 20 to 100 ms.
  2. Typical values of the mid-term segment size can be 1 to 10 seconds.
  3. In cases of long recordings (e.g. music tracks) a long-term averaging of the mid-term features can be applied so that the whole signal is represented by an average vector of mid-term statistics.
  4. Extract mid-term features and long-term averages in order to produce one feature vector per audio signal.

三、计算相似矩阵

论文中提到:A similarity matrix is computed based on the cosine distances of the individual feature vectors.
但是在实际操作的过程中发现不同特征的量纲不同,导致用余弦相似度来计算特征相似度不准确。例:

7 8 9
2.62281350727428e-10 0 -50.5964425626941
2.29494356256208e-11 0 -50.5964425626941
4.55467645371887e-11 0 -50.5964425626941

所以我决定计算不同特征的相对比值,然后取平均值。

def similarity(v1, v2):
#   计算平均相似度
    temp = []
    sim = []
    p = 0
    q = 1
    
    for ii in range(v1.shape[0]):
        for jj in range(v1.shape[1]):
            if v1[ii, jj]!=0 or v2[ii, jj]!=0 :
                temp.append((1 - 
        abs(v1[ii, jj]-v2[ii, jj])/max(abs(v1[ii,
        jj]),abs(v2[ii, jj]))))
                q += 1
        sim.append(np.mean(temp[p:q]))
        p = q
    print(sim)
    return sim

此外可以尝试马氏距离——参考文章:
下文为部分摘抄。

  • 使用场景:

    1、度量两个服从同一分布并且其协方差矩阵为C的随机变量X与Y的差异程度
    2、度量X与某一类的均值向量的差异程度,判别样本的归属。此时,Y为类均值向量.

  • 马氏距离的优缺点:
    优点:量纲无关,排除变量之间的相关性的干扰
    缺点:不同的特征不能差别对待,可能夸大弱特征

四、减少运行代码的时间

之前将歌曲划分为等差序列的长度demo,可计算一个片段的特征就要好久。我等不下去,所以决定想法子降低复杂度。我想到两个办法:

  • 在原来等差序列的片段上随机选取四秒片段,计算特征相似度。如果大于0.5,那么在计算完整片段的特征相似度。
  • 将原来采样频率44.1kHz缩小四倍
k = 4
ii = 0
w_decrease = [[], []]
#   降低音频分辨率
for kk in (0, 1):
    while ii < len(w[:, kk]):
        if ii + k < len(w[:, kk]):
            w_decrease[kk].append(np.mean(w[ii:ii+k, kk]))
        else:
            w_decrease[kk].append(np.mean(
                    w[ii:len(w[:, kk])+1, kk]))
        ii = ii + k
w = w_decrease

五、完整代码

# -*- coding: utf-8 -*-
"""
Created on Fri Jan 10 21:51:38 2020

@author: yoona
"""
import os
import sys
import wave
import numpy as np
#import struct
from pydub import AudioSegment
import matplotlib.pyplot as plt
from pyAudioAnalysis import audioFeatureExtraction as afe
import eyed3
import random
import math

def Features(path, mode):
    x = wave.open(path)
    params = x.getparams()
    print(params)

    if params[0] != 2:
        raise ValueError('通道数不等于2')

    strData = x.readframes(params[3])
    w = np.frombuffer(strData, dtype=np.int16)
    w = np.reshape(w,[params[3], params[0]])
    
    k = 4
    ii = 0
    w_decrease = [[], []]
    
    if mode == 'second':
    #   降低音频分辨率
        for kk in (0, 1):
            while ii < len(w[:, kk]):
                if ii + k < len(w[:, kk]):
                    w_decrease[kk].append(np.mean(w[ii:ii+k, kk]))
                else:
                    w_decrease[kk].append(np.mean(
                            w[ii:len(w[:, kk])+1, kk]))
                ii = ii + k
        w = w_decrease
        
    eigen_vector_0 = afe.mtFeatureExtraction(
            w[:, 0], params[2],30.0, 30.0, 2, 2)
    eigen_vector_1 = afe.mtFeatureExtraction(
            w[:, 1], params[2],30.0, 30.0, 2, 2)
    
    return eigen_vector_0, eigen_vector_1

def read_wave(wav_path):
    w = wave.open(wav_path)
    params = w.getparams()
#    print(params)
#   声道数、量化位数(byte)、采样频率、采样点数 
    nchannels, sampwidth, framerate, nframes = params[:4]
    
#   文件时间
    t = np.arange(0, nframes)*(1/framerate)
    strData = w.readframes(nframes)#读取音频,字符串格式
    waveData = np.frombuffer(strData, dtype=np.int16)#将字符串转化为int
    waveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化
    waveData = np.reshape(waveData,[nframes, nchannels])#双通道数
    
#    plot the wave
    plt.figure()
    plt.subplot(4,1,1)
    plt.plot(t,waveData[:, 0])
    plt.xlabel("Time(s)")
    plt.ylabel("Amplitude")
    plt.title("Ch-1 wavedata")
    plt.grid('on')#标尺,on:有,off:无
    plt.subplot(4,1,3)
    plt.plot(t,waveData[:, 1])
    plt.xlabel("Time(s)")
    plt.ylabel("Amplitude")
    plt.title("Ch-2 wavedata")
    plt.grid('on')#标尺,on:有,off:无
    plt.show()  
    
def similarity(v1, v2):
#   计算平均相似度
    temp = []
    sim = []
    p = 0
    q = 1
    
    for ii in range(v1.shape[0]):
        for jj in range(v1.shape[1]):
            if v1[ii, jj]!=0 or v2[ii, jj]!=0 :
                temp.append((1 - 
        abs(v1[ii, jj]-v2[ii, jj])/max(abs(v1[ii, jj]),abs(v2[ii, jj]))))
                q += 1
        sim.append(np.mean(temp[p:q]))
        p = q
    print(sim)
    return sim

def compute_chunk_features(mp3_path):
# =============================================================================
# 计算相似度第一步
# =============================================================================
#   获取歌曲时长
    mp3Info = eyed3.load(mp3_path)
    time = int(mp3Info.info.time_secs)
    print(time)
    tail, track = os.path.split(mp3_path)
    
#   创建两个文件夹
    dirct_1 = tail + r'\wavSession'
    dirct_2 = tail + r'\wavBlock'
    if not os.path.exists(dirct_1):
        os.makedirs(dirct_1)
    if not os.path.exists(dirct_2):
        os.makedirs(dirct_2)  

#   获取歌曲名字
    song_name = track.split('.')
#   转换格式
    wav_all_path = os.path.join(tail, song_name[0]+'.wav')
    sound = AudioSegment.from_file(mp3_path, format='mp3')
    sound.export(wav_all_path, format='wav')
    read_wave(wav_all_path)
#   划分音频
    gap = 4
    diff = time/10 - 8
    start_time = 0
    end_time = math.floor(diff)
    vector_0 = np.zeros((10, 68))
    vector_1 = np.zeros((10, 68))
    info = []#记录片段开始时间点
    
    for jj in range(5):
        wav_name = song_name[0]+str(jj)+'.wav'
        wav_path = os.path.join(tail, 'wavSession', wav_name)
#       随机产生四秒片段
        rand_start = random.randint(start_time, end_time) 
        blockData = sound[rand_start*1000:(rand_start+gap)*1000]
##       音频切片,时间的单位是毫秒
#        blockData = sound[start_time*1000:end_time*1000]
        blockData.export(wav_path, format='wav')
        eigVector_0, eigVector_1 = Features(wav_path, [])
        print(jj)# 标记程序运行进程
#       得到一个片段的特征向量
        vector_0[jj, :] = np.mean(eigVector_0[0], 1)
        vector_1[jj, :] = np.mean(eigVector_1[0], 1)
#       迭代
        diff = diff + 4
        info.append((start_time, end_time))
        start_time = end_time
        end_time = math.floor(start_time + diff)
        
#   承上启下
    end_time = start_time 
    
    for kk in range(5, 10):
#       迭代
        diff = diff - 4
        info.append((start_time, start_time + diff))
        start_time = end_time
        end_time = math.floor(start_time + diff)
        wav_name = song_name[0]+str(kk)+'.wav'
        wav_path = os.path.join(tail, 'wavSession', wav_name)
        
#       随机产生四秒片段
        rand_start = random.randint(start_time, end_time) 
        blockData = sound[rand_start*1000:(rand_start+gap)*1000]        
#        blockData = sound[start_time*1000:end_time*1000]
        blockData.export(wav_path, format='wav')
        eigVector_0, eigVector_1 = Features(wav_path, [])
        print(kk)#标记程序运行进程
#       得到一个片段的特征向量
        
        vector_0[kk, :] = np.mean(eigVector_0[0], 1)
        vector_1[kk, :] = np.mean(eigVector_1[0], 1)
        
    return vector_0, vector_1, info# 双通道各自的特征向量

def Compute_Bolck_Features(info, mp3_path):
# =============================================================================
# 计算相似度第二步
# =============================================================================
#   获取歌曲时长
    mp3Info = eyed3.load(mp3_path)
    time = int(mp3Info.info.time_secs)
    print(time)
#   获取歌曲名字
    tail, track = os.path.split(mp3_path)
    song_name = track.split('.')
#   转换格式
    sound = AudioSegment.from_file(mp3_path, format='mp3')
    vector_0 = np.zeros((len(info), 68))
    vector_1 = np.zeros((len(info), 68))
    
    for kk in range(len(info)):
        #   获取歌曲完整片段的特征
        wav_name = song_name[0]+str(kk)+'.wav'
        wav_path = os.path.join(tail, 'wavBlock', wav_name)
        #   截取完整片段
        blockData = sound[info[kk][0]*1000:info[kk][1]*1000]        
        blockData.export(wav_path, format='wav')
        eigVector_0, eigVector_1 = Features(wav_path, 'second')
        print(kk)#标记程序运行进程
        #   得到一个片段的特征向量
        vector_0[kk, :] = np.mean(eigVector_0[0], 1)
        vector_1[kk, :] = np.mean(eigVector_1[0], 1)
    return vector_0, vector_1

def file_exists(file_path):
    if os.path.splitext(file_path) == '.mp3':
        if os.path.isfile(file_path):
            return file_path
        else:
            raise TypeError('文件不存在')
    else:
        raise TypeError('文件格式错误,后缀不为.mp3')

if __name__ == '__main__':

#for path, dirs, files in os.walk('C:/Users/yoona/Desktop/music_test/'):
#    for f in files:
#        if not f.endwith('.mp3'):
#            continue
# 把路径组装到一起
#path = r'C:\Users\yoona\Desktop\musictest'
#f = 'CARTA - Aranya (Jungle Festival Anthem).mp3'
#mp3_path = os.path.join(path, f)
# =============================================================================
# sa_b:a表示歌曲的序号,b表示歌曲的通道序号
# =============================================================================
#s1_0, s1_1, info1= compute_chunk_features(mp3_path) 
#    path_1 = file_exists(sys.argv[1])
#    path_2 = file_exists(sys.argv[2])]
    
    path_1 = r'C:\Users\yoona\Desktop\music\薛之谦 - 别.mp3'
    path_2 = r'C:\Users\yoona\Desktop\music\薛之谦 - 最好.mp3'
    
    s1_1, s1_2, info1 = compute_chunk_features(path_1)
    s2_1, s2_2, info2 = compute_chunk_features(path_2)
    
    sim_1 = similarity(s1_1, s2_1)#通道数1
    sim_2 = similarity(s1_2, s2_2)#通道数2
    
    info1_new = []
    info2_new = []
    
    for i, element in enumerate(sim_1):
        if element >= 0.5:
            info1_new.append(info1[i])
            
    if not info1_new:
        pos = np.argmax(sim_1)
        info1_new.append(info1[pos])
    s1_1, s1_2 = Compute_Bolck_Features(info1_new, path_1)
    
    for i, element in enumerate(sim_2):
        if element >= 0.5:
            info2_new.append(info2[i])

    if not info2_new:
        pos = np.argmax(sim_2)
        info2_new.append(info2[pos])
    s2_1, s2_2 = Compute_Bolck_Features(info2_new, path_2)
    
    sim_1 = similarity(s1_1, s2_1)#通道数1
    sim_2 = similarity(s1_2, s2_2)#通道数2

六、结果分析

第一组实验对象:
A:薛之谦 - 最好.mp3
B:薛之谦 - 别.mp3
第二组实验对象:
A:Karim Mika - Superficial Love.mp3
B: Burgess/JESSIA - Eclipse.mp3
第三组实验对象:
A: CARTA - Aranya (Jungle Festival Anthem).mp3
B: 薛之谦 - 别.mp3

你可能感兴趣的:(python,音频分析,信号与系统)