柱状图
import pyecharts.charts as pyec
x = ['甲','乙','丙']
y = [300,800,600]
bar = pyec.Bar()
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y)
bar.render_notebook()
![Python之pyecharts_第1张图片](http://img.e-com-net.com/image/info8/e217c45af39e42d7950d2b6afdf82759.jpg)
import pyecharts.options as opts
bar.set_global_opts(title_opts=opts.TitleOpts(title="比较图"))
bar.render_notebook()
![Python之pyecharts_第2张图片](http://img.e-com-net.com/image/info8/e9e12390239846ae9ba8cf876a774303.jpg)
import pyecharts.options as opts
bar.set_global_opts(title_opts=opts.TitleOpts(title="比较图"))
y1 = [1200,500,200]
bar.add_yaxis(series_name='公司B',yaxis_data=y1)
bar.render_notebook()
![Python之pyecharts_第3张图片](http://img.e-com-net.com/image/info8/1c7bb462de9d4456b2e5ebf6135d1c13.jpg)
bar.reversal_axis()
bar.render_notebook()
![Python之pyecharts_第4张图片](http://img.e-com-net.com/image/info8/359fb12cda6248d89994e4e150e8e711.jpg)
折线图
x1 = ['2017','2018','2019']
y1 = [300,900,600]
line = pyec.Line()
line.add_xaxis(x1)
line.add_yaxis(series_name='A',y_axis=y1)
line.render_notebook()
![Python之pyecharts_第5张图片](http://img.e-com-net.com/image/info8/d9769507a8044775b8ab3db69c4e0d4a.jpg)
y2 = [1300,500,900]
line.add_yaxis(series_name='B',y_axis=y2)
bar.set_global_opts(title_opts=opts.TitleOpts(title="比较图"))
line.render_notebook()
![Python之pyecharts_第6张图片](http://img.e-com-net.com/image/info8/fecbb2da0f4e4a959374a8a72af1899e.jpg)
工具箱设置
line.set_global_opts(
tooltip_opts = opts.TooltipOpts(trigger='axis',axis_pointer_type='cross'),
toolbox_opts = opts.ToolboxOpts(is_show=True,orient='horizontal'))
line.render_notebook()
![Python之pyecharts_第7张图片](http://img.e-com-net.com/image/info8/1f571c2584d74a8c91c70cc526a1973a.jpg)
设置图表的大小
x1 = ['2017','2018','2019']
y1 = [300,900,600]
line = pyec.Line(init_opts = opts.InitOpts(width = '500px',height = '300px'))
line.add_xaxis(x1)
line.add_yaxis(series_name='A',y_axis=y1)
line.render_notebook()
![Python之pyecharts_第8张图片](http://img.e-com-net.com/image/info8/5fecc40e38674ad8b5d8edee4aa76bc0.jpg)
设置区域铺放功能
bar.set_global_opts(
tooltip_opts = opts.TooltipOpts(trigger='axis',axis_pointer_type='cross'),
toolbox_opts = opts.ToolboxOpts(is_show=True,orient='horizontal'),
datazoom_opts=opts.DataZoomOpts(type_ = 'slider',range_start=(),range_end=2500))
bar.render_notebook()
![Python之pyecharts_第9张图片](http://img.e-com-net.com/image/info8/e8873185be3f45f1849a56d7824c06ea.jpg)
饼图
x_data = ['直接访问','营销推广','博客推广','搜索引擎']
y_data = [830,214,399,1199]
data_pair = list(zip(x_data,y_data))
print(data_pair)
[('直接访问', 830), ('营销推广', 214), ('博客推广', 399), ('搜索引擎', 1199)]
pie = pyec.Pie()
pie.add(series_name='推广渠道',data_pair=data_pair)
pie.render_notebook()
![Python之pyecharts_第10张图片](http://img.e-com-net.com/image/info8/178a926eb6c6458a96639977e9b30d6c.jpg)
函数散点图
import numpy as np
x = np.linspace(0,10,30)
y1 = np.sin(x)
y2 = np.cos(x)
scatter = pyec.Scatter()
scatter.add_xaxis(xaxis_data=x)
scatter.add_yaxis(series_name='y=sin(x)',y_axis=y1,label_opts=opts.LabelOpts(is_show=False))
scatter.add_yaxis(series_name='y=cos(x)',y_axis=y2,label_opts=opts.LabelOpts(is_show=False))
scatter.set_global_opts(
xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
visualmap_opts=opts.VisualMapOpts(min_=-1,max_=1)
)
scatter.render_notebook()
![Python之pyecharts_第11张图片](http://img.e-com-net.com/image/info8/064d1fb1e3ac4ac0b899650dce28d7ec.jpg)
词云
import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
s = """
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
"""
s = s.lower().split()
result={}
for i in s:
result[i]=s.count(i)
print(result)
{'the': 6, 'zen': 1, 'of': 3, 'python,': 1, 'by': 1, 'tim': 1, 'peters': 1, 'beautiful': 1, 'is': 10, 'better': 8, 'than': 8, 'ugly.': 1, 'explicit': 1, 'implicit.': 1, 'simple': 1, 'complex.': 1, 'complex': 1, 'complicated.': 1, 'flat': 1, 'nested.': 1, 'sparse': 1, 'dense.': 1, 'readability': 1, 'counts.': 1, 'special': 2, 'cases': 1, "aren't": 1, 'enough': 1, 'to': 5, 'break': 1, 'rules.': 1, 'although': 3, 'practicality': 1, 'beats': 1, 'purity.': 1, 'errors': 1, 'should': 2, 'never': 2, 'pass': 1, 'silently.': 1, 'unless': 2, 'explicitly': 1, 'silenced.': 1, 'in': 1, 'face': 1, 'ambiguity,': 1, 'refuse': 1, 'temptation': 1, 'guess.': 1, 'there': 1, 'be': 3, 'one--': 1, 'and': 1, 'preferably': 1, 'only': 1, 'one': 2, '--obvious': 1, 'way': 2, 'do': 2, 'it.': 1, 'that': 1, 'may': 2, 'not': 1, 'obvious': 1, 'at': 1, 'first': 1, "you're": 1, 'dutch.': 1, 'now': 1, 'never.': 1, 'often': 1, '*right*': 1, 'now.': 1, 'if': 2, 'implementation': 2, 'hard': 1, 'explain,': 2, "it's": 1, 'a': 2, 'bad': 1, 'idea.': 2, 'easy': 1, 'it': 1, 'good': 1, 'namespaces': 1, 'are': 1, 'honking': 1, 'great': 1, 'idea': 1, '--': 1, "let's": 1, 'more': 1, 'those!': 1}
d = list(result.items())
d
[('the', 6),
('zen', 1),
('of', 3),
('python,', 1),
('by', 1),
('tim', 1),
('peters', 1),
('beautiful', 1),
('is', 10),
('better', 8),
('than', 8),
('ugly.', 1),
('explicit', 1),
('implicit.', 1),
('simple', 1),
('complex.', 1),
('complex', 1),
('complicated.', 1),
('flat', 1),
('nested.', 1),
('sparse', 1),
('dense.', 1),
('readability', 1),
('counts.', 1),
('special', 2),
('cases', 1),
("aren't", 1),
('enough', 1),
('to', 5),
('break', 1),
('rules.', 1),
('although', 3),
('practicality', 1),
('beats', 1),
('purity.', 1),
('errors', 1),
('should', 2),
('never', 2),
('pass', 1),
('silently.', 1),
('unless', 2),
('explicitly', 1),
('silenced.', 1),
('in', 1),
('face', 1),
('ambiguity,', 1),
('refuse', 1),
('temptation', 1),
('guess.', 1),
('there', 1),
('be', 3),
('one--', 1),
('and', 1),
('preferably', 1),
('only', 1),
('one', 2),
('--obvious', 1),
('way', 2),
('do', 2),
('it.', 1),
('that', 1),
('may', 2),
('not', 1),
('obvious', 1),
('at', 1),
('first', 1),
("you're", 1),
('dutch.', 1),
('now', 1),
('never.', 1),
('often', 1),
('*right*', 1),
('now.', 1),
('if', 2),
('implementation', 2),
('hard', 1),
('explain,', 2),
("it's", 1),
('a', 2),
('bad', 1),
('idea.', 2),
('easy', 1),
('it', 1),
('good', 1),
('namespaces', 1),
('are', 1),
('honking', 1),
('great', 1),
('idea', 1),
('--', 1),
("let's", 1),
('more', 1),
('those!', 1)]
wordcloud = pyec.WordCloud()
wordcloud.add(series_name='',data_pair=d)
wordcloud.render_notebook()
![Python之pyecharts_第12张图片](http://img.e-com-net.com/image/info8/7adb5135ec8c4bcb93186d0bf0fc40ba.jpg)
x = ['衬衫','羊毛衫','雪纺衫','裤子','高跟鞋','袜子']
y1 = [14,16,53,25,15,61]
y2 = [42,11,52,67,72,14]
y3 = [21,51,75,35,73,15]
y4 = [61,71,13,84,34,89]
bar = pyec.Bar()
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第13张图片](http://img.e-com-net.com/image/info8/4ea1b02a438b4dfe9258c3a057b74b72.jpg)
多种主题类型
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第14张图片](http://img.e-com-net.com/image/info8/e98164b5fe894e428f728f8e4a967b46.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第15张图片](http://img.e-com-net.com/image/info8/2fc805947ee24a29a55658f126d2ac49.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第16张图片](http://img.e-com-net.com/image/info8/f4253fbe42664da38ab84cf39be3e157.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.ESSOS))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第17张图片](http://img.e-com-net.com/image/info8/6de8568837a84209994b1f035397eb23.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第18张图片](http://img.e-com-net.com/image/info8/456d9773af914a3bb7e3da8f792f9302.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.MACARONS))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第19张图片](http://img.e-com-net.com/image/info8/8df28b3313fd43848b8b38c963dc9954.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第20张图片](http://img.e-com-net.com/image/info8/fda95c140b4442cf9d5226cde4c39a59.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMA))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第21张图片](http://img.e-com-net.com/image/info8/a267233615dc4bd6b9797c72bc580f81.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMANTIC))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第22张图片](http://img.e-com-net.com/image/info8/913fcea735394baea9133f7255b0b946.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.SHINE))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第23张图片](http://img.e-com-net.com/image/info8/cbf65f8ff89c4bbdb71cc3748e69a264.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第24张图片](http://img.e-com-net.com/image/info8/d72f6f87292d4a05911ee965bbf30e14.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.WALDEN))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第25张图片](http://img.e-com-net.com/image/info8/942dacb975fd498a8765fc5be9ce93ea.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第26张图片](http://img.e-com-net.com/image/info8/ee7d330c61674d1397e96bce1027495b.jpg)
bar = pyec.Bar(init_opts=opts.InitOpts(theme=ThemeType.WONDERLAND))
bar.add_xaxis(x)
bar.add_yaxis(series_name='公司A',yaxis_data=y1)
bar.add_yaxis(series_name='公司B',yaxis_data=y2)
bar.add_yaxis(series_name='公司C',yaxis_data=y3)
bar.add_yaxis(series_name='公司D',yaxis_data=y4)
bar.render_notebook()
![Python之pyecharts_第27张图片](http://img.e-com-net.com/image/info8/1ca7df33ab334c5f9e83dcb19d2aab2e.jpg)
import datetime
import random
from pyecharts import options as opts
from pyecharts.charts import Calendar
def calendar_base() -> Calendar:
begin = datetime.date(2017, 1, 1)
end = datetime.date(2017, 12, 31)
data = [
[str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)]
for i in range((end - begin).days + 1)
]
c = (
Calendar()
.add("", data, calendar_opts=opts.CalendarOpts(range_="2017"))
.set_global_opts(
title_opts=opts.TitleOpts(title="Calendar-2017年微信步数情况"),
visualmap_opts=opts.VisualMapOpts(
max_=20000,
min_=500,
orient="horizontal",
is_piecewise=True,
pos_top="230px",
pos_left="100px",
),
)
)
return c
calendar_base().render_notebook()
![Python之pyecharts_第28张图片](http://img.e-com-net.com/image/info8/e8aa3d8ffc864fd699dfff0b328b9015.jpg)
import pyecharts
from pyecharts.globals import ThemeType
funnel = pyecharts.charts.Funnel()
data = [('a',12),('b',21),('c',15),('d',16),('e',23)]
funnel.add('',data)
funnel.set_global_opts(title_opts=opts.TitleOpts(title="Funnel-Label(inside)"))
funnel.render_notebook()
![Python之pyecharts_第29张图片](http://img.e-com-net.com/image/info8/3a2872b2f5d54fc7b9ad6971d2deaca7.jpg)
from pyecharts.charts import Gauge
gauge = Gauge()
gauge.add('',[('aaa',33.3)])
gauge.render_notebook()
![Python之pyecharts_第30张图片](http://img.e-com-net.com/image/info8/8403dff475cc457689448341291c9b9a.jpg)