语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)

太优秀了,收藏用!转载自:https://www.cnblogs.com/Jie-Liang/archive/2017/06/29/6902375.html

论文原文地址:https://arxiv.org/abs/1704.06857

应用于语义分割问题的深度学习技术综述

摘要

应用场景:自动驾驶室内导航、甚至虚拟现实与增强现实等。

一、引言

语义分割:(应用于静态2D图像视频甚至3D数据体数据)是计算机视觉的关键问题之一。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第1张图片
图 1 物体识别或场景理解相关技术从粗粒度推理到细粒度推理的演变:四幅图片分别代表分类识别与定位语义分割实例分割

本文核心贡献如下:
  • 1)我们对于现有的数据集给出了一个全面的调查,这些数据集将会对深度学习技术推动的分割项目发挥作用;
  • 2)我们对于多数重要的深度学习语义分割方法进行了深度有条理的综述,包括他们的起源、贡献等;
  • 3)我们进行了彻底的性能评估,使用了多种评价指标如准确率、运行时间、内存占用等;
  • 4)我们对以上结果进行了讨论,并给出了未来工作的一系列可能的发展方向,这些方向可能在未来的发展进程中取得优势。我们还给出了该领域目前最好方法的总结。
本文剩余部分安排:
  • 第二章介绍了语义分割问题,同时引入了相关工作中常用的符号、惯例等。其他的背景概念如通用的深度神经网络也在这章中回顾;
  • 第三章介绍了现有的数据集、挑战及实验基准;
  • 第四章回顾了现有方法,基于其贡献自下而上排序。本章重点关注这些方法的理论及闪光点,而不是给出一个定量的评估;
  • 第五章给出了一个简短的对于现有方法在给定数据集上定量表现的讨论,另外还有未来相关工作的发展方向;
  • 第六章则总结全文并对相关工作及该领域目前最优方法进行了总结。

二、术语及背景概念

语义分割是实现细粒度推理的很自然的一步,它的目标是:对每个像素点进行密集的预测,这样每个像素点均被标注上对应物体或区域的类别。

2.1 常见的深度网络架构

AlexNet(2012)

AlexNet(以作者名字Alex命名)首创了深度卷积神经网络模型,在2012年ILSVRC(ImageNet大规模图像识别)竞赛上以top-5准确率84.6%的成绩获胜,而与之最接近的竞争者使用了传统的而非深度的模型技术,在相同的问题下仅取得了73.8%的准确率。由Krizhecsky等人[14]给出的架构相对简单,包括卷积层、max-pooling层及ReLU层各五层作为非线性层,全连接层三层以及dropout层。图2给出了这个架构的示意。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第2张图片
图 2 AlexNet卷积神经网络架构。

VGG(2013)

这个模型由于由16个权重层组成,因此也被称为VGG-16,,VGG-16与之前的模型的主要的不同之处在于,其在第一层使用了一堆小感受野的卷积层,而不是少数的大感受野的卷积层。这使得模型的参数更少,非线性性更强,也因此使得决策函数更具区分度,模型更好训练。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第3张图片
图 3 VGG-16卷积神经网络模型架构

GoogLeNet(2014)

这个CNN模型以其复杂程度著称,事实上,其具有22个层以及新引入的inception模块(如图4所示)。这种新的方法证实了CNN层可以有更多的堆叠方式,而不仅仅是标准的序列方式。实际上,这些模块由一个网络内部的网络层(NiN)、一个池化操作、一个大卷积核的卷积层及一个小核的卷积层组成。所有操作均并行计算出来,而后进行1×1卷积操作来进行降维。由于这些模块的作用,参数及操作的数量大大减少,网络在存储空间占用及耗时等方面均取得了进步。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第4张图片
图 4 GoogLeNet框架中带有降维的Inception模块。

ResNet(2016)

ResNet网络还以其高达152层的深度以及对残差模块的引入而闻名。残差模块解决了训练真正深层网络时存在的问题,通过引入identity skip connections网络各层可以把其输入复制到后面的层上。本方法的关键想法便是,保证下一层可以从输入中学到与已经学到的信息不同的新东西(因为下一层同时得到了前一层的输出以及原始的输入)。另外,这种连接也协助解决了梯度消失的问题。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第5张图片
图 5 ResNet中的残差模块

ReNet

为了将循环神经网络RNN模型扩展到多维度的任务上,Graves等人[18]提出了一种多维度循环神经网络(MDRNN)模型,将每个单一的循环连接替换为带有d个连接的标准RNN,其中d是数据的spatio-temporal维度。基于这篇工作,Visin等人[19]提出了ReNet模型,其不使用多维RNN模型,而是使用常见的序列RNN模型。这样,RNN模型的数量在每一层关于d(输入图像的维数2d)线性增长。在ReNet中,每个卷积层(卷积+池化)被4个同时在水平方向与竖直方向切分图像的RNN模型所替代,如图6所示:
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第6张图片
图 6 ReNet架构中的一层,对竖直与水平方向的空间依赖性建模

2.2 迁移学习

解决的问题:大量的数据集、训练时间、随机初始化效果不好,Yosinski等人证明了即便是从较不相关的任务中迁移学习来的特征也要比直接从随机初始化学习的特征要好。

然而,迁移学习技术的应用并没有如此的直接。一方面,使用提前训练的网络必须满足网络架构等的约束,不过,因为一般不会新提出一个全新的网络结构来使用,所以使用现有的网络架构或网络组件进行迁移学习是常见的;另一方面,迁移学习中的训练过程本身相对于从头开始的训练过程来说区别非常小。合理选择进行微调的层是很重要的,一般选网络中较高的层因为底层一般倾向于保留更加通用的特征;同时,合理地确定学习率也是重要的,一般选取较小的值,因为一般认为提前训练的权重相对比较好,无需过度修改。

2.3 数据预处理与数据增强

平移、旋转、扭曲、缩放、颜色空间转换、裁剪等,防止过拟合以及对模型进行正则化,

三、数据集及竞赛

3.1 二维数据集

PASCAL视觉物体分类数据集(PASCAL-VOC)[27] (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/) : 包括一个标注了的图像数据集和五个不同的竞赛:分类、检测、分割、动作分类、人物布局。分割的竞赛很有趣:他的目标是为测试集里的每幅图像的每个像素预测其所属的物体类别。有21个类,包括轮子、房子、动物以及其他的:飞机、自行车、船、公共汽车、轿车、摩托车、火车、瓶子、椅子、餐桌、盆栽、沙发、显示器(或电视)、鸟、猫、狗、马、绵羊、人。如果某像素不属于任何类,那么背景也会考虑作为其标签。该数据集被分为两个子集:训练集1464张图像以及验证集1449张图像。测试集在竞赛中是私密的。争议的说,这个数据集是目前最受欢迎的语义分割数据集,因此很多相关领域卓越的工作将其方法提交到该数据集的评估服务器上,在其测试集上测试其方法的性能。方法可以只用该数据集训练,也可以借助其他的信息。另外,其方法排行榜是公开的而且可以在线查询。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第7张图片
PASCAL 上下文数据集(PASCAL Context)[28] (http://www.cs.stanford.edu/∼roozbeh/pascal-context/):对于PASCAL-VOC 2010识别竞赛的扩展,包含了对所有训练图像的像素级别的标注。共有540个类,包括原有的20个类及由PASCAL VOC分割数据集得来的图片背景,分为三大类,分别是物体、材料以及混合物。虽然种类繁多,但是只有59个常见类是较有意义的。由于其类别服从一个幂律分布,其中有很多类对于整个数据集来说是非常稀疏的。就这点而言,包含这59类的子集常被选作真实类别来对该数据集进行研究,其他类别一律重标为背景。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第8张图片
PASCAL 部分数据集(PASCAL Part)[29] (http://www.stat.ucla.edu/∼xianjie.chen/pascal part dataset/pascal part.html):对于PASCAL-VOC 2010识别竞赛的扩展,超越了这次竞赛的任务要求而为图像中的每个物体的部分提供了一个像素级别的分割标注(或者当物体没有连续的部分的时候,至少是提供了一个轮廓的标注)。原来的PASCAL-VOC中的类被保留,但被细分了,如自行车被细分为后轮、链轮、前轮、手把、前灯、鞍座等。本数据集包含了PASCAL VOC的所有训练图像、验证图像以及9637张测试图像的标签。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第9张图片
语义边界数据集(SBD)[30] (http://home.bharathh.info/home/sbd):是PASCAL数据集的扩展,提供VOC中未标注图像的语义分割标注。提供PASCAL VOC 2011 数据集中11355张数据集的标注,这些标注除了有每个物体的边界信息外,还有类别级别及实例级别的信息。由于这些图像是从完整的PASCAL VOC竞赛中得到的,而不仅仅是其中的分割数据集,故训练集与验证集的划分是不同的。实际上,SBD有着其独特的训练集与验证集的划分方式,即训练集8498张,验证集2857张。由于其训练数据的增多,深度学习实践中常常用SBD数据集来取代PASCAL VOC数据集。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第10张图片
微软常见物体环境数据集(Microsoft COCO) [31]:(http://mscoco.org/) 是另一个大规模的图像识别、分割、标注数据集。它可以用于多种竞赛,与本领域最相关的是检测部分,因为其一部分是致力于解决分割问题的。该竞赛包含了超过80个类别,提供了超过82783张训练图片,40504张验证图片,以及超过80000张测试图片。特别地,其测试集分为4个不同的子集各20000张test-dev是用于额外的验证及调试,test-standard是默认的测试数据,用来与其他最优的方法进行对比,test-challenge是竞赛专用,提交到评估服务器上得出评估结果,test-reserve用于避免竞赛过程中的过拟合现象(当一个方法有嫌疑提交过多次或者有嫌疑使用测试数据训练时,其在该部分子集上的测试结果将会被拿来作比较)。由于其规模巨大,目前已非常常用,对领域发展很重要。实际上,该竞赛的结果每年都会在ECCV的研讨会上与ImageNet数据集的结果一起公布。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第11张图片
图像与注释合成数据集(SYNTHIA)[32] (http://synthia-dataset.net/)是一个大规模的虚拟城市的真实感渲染图数据集,带有语义分割信息,是为了在自动驾驶或城市场景规划等研究领域中的场景理解而提出的。提供了11个类别物体(分别为空、天空、建筑、道路、人行道、栅栏、植被、杆、车、信号标志、行人、骑自行车的人)细粒度的像素级别的标注。包含从渲染的视频流中提取出的13407张训练图像,该数据集也以其多变性而著称,包括场景(城镇、城市、高速公路等)、物体、季节、天气等。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第12张图片
城市风光数据集 [33] (https://www.cityscapes-dataset.com/)是一个大规模的关注于城市街道场景理解的数据集,提供了8种30个类别的语义级别、实例级别以及密集像素标注(包括平坦表面、人、车辆、建筑、物体、自然、天空、空)。该数据集包括约5000张精细标注的图片,20000张粗略标注的图片。数据是从50个城市中持续数月采集而来,涵盖不同的时间以及好的天气情况。开始起以视频形式存储,因此该数据集按照以下特点手动选出视频的帧:大量的动态物体,变化的场景布局以及变化的背景。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第13张图片
CamVid数据集 [55,34] (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)是一个道路、驾驶场景理解数据集,开始是五个视频序列,来自一个安装在汽车仪表盘上的960x720分辨率的摄相机。这些序列中采样出了701个帧(其中4个序列在1fps处,1个序列在15fps处),这些静态图被手工标注上32个类别:空、建筑、墙、树、植被、栅栏、人行道、停车场、柱或杆、锥形交通标志、桥、标志、各种文本、信号灯、天空、……(还有很多)。值得注意的是,Sturgess等人[35]将数据集按照367-100-233的比例分为训练集、验证集、测试集,这种分法使用了部分类标签:建筑、树、天空、车辆、信号、道路、行人、栅栏、杆、人行道、骑行者。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第14张图片
KITTI [56] 是用于移动机器人及自动驾驶研究的最受欢迎的数据集之一,包含了由多种形式的传感器得出的数小时的交通场景数据,包括高分辨率RGB、灰度立体摄像机以及三维激光扫描器。尽管很受欢迎,该数据集本身并没有包含真实语义分割标注,但是,众多的研究者手工地为该数据集的部分数据添加标注以满足其问题的需求。Alvarez等人[36,37]为道路检测竞赛中的323张图片生成了真实标注,包含三个类别:道路、垂直面和天空。Zhang等人[39]标注了252张图片,其中140张训练、112张测试,其选自追踪竞赛中的RGB和Velodyne扫描数据,共十个类。Ros等人[38]在视觉测距数据集中标注了170个训练图片和46个测试图片,共11个类。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第15张图片
YouTube物体数据集 [57] 是从YouTube上采集的视频数据集,包含有PASCAL VOC中的10个类。该数据集不包含像素级别的标注,但是Jain等人[42]手动的标注了其126个序列的子集。其在这些序列中每10个帧选取一张图片生成器语义标签,总共10167张标注的帧,每帧480x360的分辨率。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第16张图片
Adobe肖像分割数据集 [26] (http://xiaoyongshen.me/webpage portrait/index.html) 包含从Flickr中收集的800x600的肖像照片,主要是来自手机前置摄像头。该数据集包含1500张训练图片和300张预留的测试图片,这些图片均完全被二值化标注为人或背景。图片被半自动化的标注:首先在每幅图片上运行一个人脸检测器,将图片变为600x800的分辨率,然后,使用Photoshop快速选择工具将人脸手工标注。这个数据集意义重大,因为其专门适用于人脸前景的分割问题。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第17张图片
上下文语料数据集(MINC)[43] 是用于对块进行分类以及对整个场景进行分割的数据集。该数据集提供了23个类的分割标注(文中有详细的各个类别的名称),包含7061张标注了的分割图片作为训练集,5000张的测试集和2500张的验证集。这些图片均来自OpenSurfaces数据集[58],同时使用其他来源如Flickr或Houzz进行增强。因此,该数据集中的图像的分辨率是变化的,平均来看,图片的分辨率一般是800x500或500x800。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第18张图片
密集标注的视频分割数据集(DAVIS)[44,45](http://davischallenge.org/index.html):该竞赛的目标是视频中的物体的分割,这个数据集由50个高清晰度的序列组成,选出4219帧用于训练,2023张用于验证。序列中的帧的分辨率是变化的,但是均被降采样为480p的。给出了四个不同类别的像素级别的标注,分别是人、动物、车辆、物体。该数据集的另一个特点是每个序列均有至少一个目标前景物体。另外,该数据集特意地较少不同的大动作物体的数量。对于那些确实有多个前景物体的场景,该数据集为每个物体提供了单独的真实标注,以此来支持实例分割。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第19张图片
斯坦福背景数据集[40] (http://dags.stanford.edu/data/iccv09Data.tar.gz)包含了从现有公开数据集中采集的户外场景图片,包括LabelMe, MSRC, PASCAL VOC 和Geometric Context。该数据集有715张图片(320x240分辨率),至少包含一个前景物体,且有图像的水平位置信息。该数据集被以像素级别标注(水平位置、像素语义分类、像素几何分类以及图像区域),用来评估场景语义理解方法。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第20张图片
==SiftFlow ==[41]:包含2688张完全标注的图像,是LabelMe数据集[59]的子集。多数图像基于8种不同的户外场景,包括街道、高山、田地、沙滩、建筑等。图像是256x256的,分别属于33个语义类别。未标注的或者标为其他语义类别的像素被认为是空。

语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第21张图片

四、方法

深度学习技术,对于一个特定数据集的像素级标注问题,其使用一种端对端的方法而不是手工设计的特征,而手工设计特征需要领域专门知识耗时耗力而且有时太过精细化以致于只能在某个特定的场景下使用
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第22张图片
图 7 [65]中的全卷积神经网络示意图。将全连接层替换为卷积层,便可将用于分类的CNN网络转化为生成空间热区的网络。加入反卷积层来实现上采样,使得网络可以进行密集推理并学到每个像素点的标签。

最近,最成功用于语义分割的深度学习技术均来自同一个工作,即==卷积网络FCN ==[65],该方法的出色之处在于,其利用了现存的CNN网络作为其模块之一来产生层次化的特征。作者将现存的知名的分类模型包括AlexNet、VGG-16、GoogLeNet和ResNet等转化为全卷积模型:将其全连接层均替换为卷积层,输出空间映射而不是分类分数。这些映射由小步幅卷积上采样(又称反卷积)得到,来产生密集的像素级别的标签。该工作被视为里程碑式的进步,因为它阐释了CNN如何可以在语义分割问题上被端对端的训练,而且高效的学习了如何基于任意大小的输入来为语义分割问题产生像素级别的标签预测。本方法在标准数据集如PASCAL VOC分割准确率上相对于传统方法取得了极大的进步,且同样高效。由于上述及更多显著的贡献,FCN成为了深度学习技术应用于语义分割问题的基石,其处理过程如图7所示。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第23张图片
表 2 基于深度学习的语义分割方法总结

语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第24张图片
图 8 所提及方法的形象化展示

尽管FCN模型强大而普适,它任然有着多个缺点从而限制其对于某些问题的应用:其固有的空间不变性导致其没有考虑到有用的全局上下文信息,其并没有默认考虑对实例的辨识,其效率在高分辨率场景下还远达不到实时操作的能力,并且其不完全适合非结构性数据如3D点云,或者非结构化模型。这些问题我们将在本节进行综述,同时给出目前最优的解决这些问题的办法。表2给出了这个综述的总结,展示了所有的提及的方法(按照本节中出现的先后排序)、他们所基于的架构、主要的贡献、以及基于其任务目标的分级:准确率、效率、训练难度、序列数据处理、多模式输入以及3D数据处理能力等。每个目标分为3个等级,依赖于对应工作对该目标的专注程度,叉号则代表该目标问题并没有被该工作考虑进来。另外,图8对提及方法的关系进行了形象化的描述。

4.1解码器变体

除了FCN之外,还有其他的变体来将原用于分类的网络转化为适合分割的形式。有争议的说,基于FCN的架构更加受欢迎,也更成功,但是其他替代的架构也同样值得注意。一般来说,这些网络均选用一种分类网络如VGG-16,然后去掉其全连接层。分割网络的这个部分通常被称之为编码器产生低分辨率的图像表示或者特征映射。而问题在于学习如何解码或者将这些低分辨率的图像为分割问题映射到像素级别的预测上去。这部分被称为解码器,一般是这种架构的不同方法的区别所在。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第25张图片
图 9 SegNet架构示意图。一个编码器加一个解码器,然后是一个softmax分类器用于像素级别的分类,图来自[66]。

SegNet [66] 是理解这种区别的很明显的例子(见图9)。解码器部分由一系列的上采样及卷积层组成,最终接上一个softmax分类器来预测像素级别的标签,以此作为输出,可以达到与输入图像相同的分辨率。解码器部分的每个上采样层对应于编码器中的一个最大池化层,解码器中的这些层用索引自编码器阶段的对应的特征映射来进行最大池化,从而对目前的特征映射进行上采样。这些上采样得来的映射接下来将由一系列的可训练的滤波器集合来进行卷积,从而产生密集的特征映射。当特征映射被修复为与原输入相同分辨率的时候,其将被输入softmax分类器中得到最终的分割结果。

语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第26张图片
图 10 SegNet(左)与FCN(右)解码器的对比。SegNets用对应的编码器部分最大池化来进行上采样而FCN学习出反卷积滤波器来进行上采样(其中加入编码器中对应的特征映射)。图取自[66].

而另一方面,基于FCN的架构利用了可学习的反卷积滤波器来对特征映射进行上采样,然后,上采样得到的特征映射将按照元素优先的方式加入到编码器部分卷积层得到的对应的特征映射中。图10展示了两种方法的对比。

4.2 整合上下文知识

语义分割需要对多种空间尺度的信息予以整合,也需要对局部与全局信息进行平衡。一方面,细粒度的或者局部的信息对于提高像素级别的标注的正确率来说是关键的;另一方面,整合图像全局的上下文信息对于解决局部模糊性问题来说也是重要的。

一般的CNN模型对于处理这种平衡不是很擅长。池化层可以使网络取得某种程度的空间不变性并保持同样的计算效率,却丢失了全局的上下文信息。即便是纯的CNN网络,即没有池化层的CNN,也同样受限,因为其神经元的感受野只能随着层数线性增长

可以采用很多方法来使CNN对全局信息敏感:用条件随机场(CRF)作为后处理过程来调优结果,多尺度聚合,或者甚至是将对上下文的建模延缓到另一种深度模型中,如RNN

4.2.1 条件随机场

如前所述,CNN结构内在的空间转化不变性限制了其应用到分割问题上的准确率(尤其是其在空间位置上的准确性)。调优分割架构的输出并强化其捕捉细粒度信息的一个通用的办法就是引入条件随机场(CRF)作为其后处理模块。CRF促成了底层图像信息(如像素间的相互关系[92,93])与产生像素级别的类别标签的多类别推理输出的结合,这种结合对于捕捉长期依赖性质尤其重要,这也是关注于局部细节的CNN所未能考虑到的。

DeepLab模型[68,69]使用全连接的两两之间的CRF模型[94,95]作为其流程中的一个独立的后处理步骤,以此对分割结果进行调优。该模型将每个像素建模为某区域内的一个节点,无论两个像素距离多远,其两两之间的关系都会被衡量,因此,本模型也被称为密集或全连接因子图。使用此模型后,无论短期的还是长期的像素相互关系都被考虑进来,使得系统可以考虑到分割过程中需要的细节信息,而由于CNN的空间不变性,这些信息是CNN结构所未能考虑的。尽管全连接模型通常是低效的,该模型由于可以用概率推理来近似,所以也可以达到相对地高效。图11展示了这种基于CRF的后处理过程对DeepLab模型产生的得分和信念映射产生的影响。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第27张图片
图 11 DeepLab中展示的CRF调优每次迭代带来的影响。第一行是得分映射(softmax之前的层的输出),第二行是信念映射(softmax的输出)。

Wild网络[43]中的材质识别使用了多种CNN模型用来识别MINC数据集中的块。这些CNN模型被以滑动窗口的方式使用,用来分类这些块,他们的权重值被转移到FCN的组成网络中,而FCN通过添加对应的上采样层来整合这些网络。多个输出取平均便得到了一个平均的映射。最后,与DeepLab中相同的CRF(只不过是离散化优化的)被用来预测与调优每个像素点处的材质。

应用CRF来调优FCN网络的分割结果的另一个显著的工作便是Zheng等人提出的CRFasRNN模型[70]。该工作主要的贡献便是将密集CRF重写为带有成对势能的形式,作为网络的组成部分之一。通过展开均值场推理的各个步骤,并将其视为RNN结构,该工作成功地将CRF与RNN整合在一起成为一个完整的端对端的网络。这篇文章的工作说明了将CRF重写为RNN模型来构造出深度网络的一部分,与Pinheiro等人[81]的工作行成了对比,而该工作使用RNN来对大规模的空间依赖性进行建模。

4.2.2 扩张的(dilated)卷积

扩张卷积,又称`a-trous卷积,是对考虑Kronecker的卷积核[96]的扩展,而这种卷积核可以指数级地扩大感受野而不丢失分辨率。换句话说,扩张卷积是常规的利用上采样滤波器的方法。扩张率 l 控制着上采样因子,如图12所示,堆叠的以 l 为扩张率的扩张卷积使得感受野呈现指数级的增长,而滤波器的参数保持线性增长。这意味着扩张卷积可以在任意分辨率图片上高效地提取密集特征。另外,值得注意的是一般的卷积只是扩张率为1时的特殊情况
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第28张图片
图 12 [71]所展示的不同扩张率的扩张卷积滤波器。(a)中扩张率为1,每个单元有33的感受野;(b)中扩张率为2,每个单元有77的感受野;(c)中扩张率为3,每个单元有15*15的感受野。

实际上,这与做正常的卷积之前扩张卷积核是等同的,这意味着根据扩张率扩充其尺寸,为空元素位置补零,换句话说,当扩张率大于1时,滤波器参数将与非近邻元素相配对。图13展示了这种扩张的滤波器。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第29张图片
图 13 滤波器元素根据扩张率与输入元素进行配对

使用扩张卷积的最重要的工作便是Yu等人[71]提出的多尺度上下文聚合的DeepLab模型(其升级版本)[69]、以及实时处理网络ENet[72]。所有这些将越来越大的各种扩张率结合,使得模型具有更大的感受野,同时不增添额外的消耗,也不会过度地对特征映射进行下采样。这些工作同时具有相同的趋势:扩张卷积与紧密多尺度上下文聚合紧密耦合,这我们将在后面章节中解释。

4.2.3 多尺度预测

整合上下文知识的另一种可能的做法便是使用多尺度预测。CNN中几乎每个单独的参数都会影响到得到的特征映射的大小,换句话说,非常相似的架构也会对输入图像的像素数量产生较大的影响,而这关系到每个特征映射。这意味着滤波器将会潜在地检测特定尺度的特征(大致上有着特定的程度)。另外,网络的参数一般都与要解决的问题息息相关,也使得模型向不同尺度的扩展变得更难。一种可能的解决方案便是使用多尺度的网络,这种网络一般都是选用多个处理不同尺度的网络,最后将他们的预测结果结合,产生一个单一的输出。

Raj等人[73] 提出了全卷积VGG-16的一种多尺度版本,有着两个路径,一个是在原始分辨率上处理输入,使用的是一个浅层的卷积网络,再一个就是在两倍分辨率上处理,使用全卷积VGG-16和一个额外的卷积层。第二个路径的结果经过上采样后与第一个路径的结果相结合,这个串联起来的结果再经过一系列的卷积层,得到最终的输出。这样,这个网络便对尺度变换更加鲁棒了。

Roy等人[75]采取了另外的方法解决这个问题,他们选用了包含4个多尺度CNN的网络,而这4个网络有着相同的架构,取自Eigen等人[74]。其中之一致力于为当前场景找出语义标签。这个网络(整体上)以一个从粗糙到精细的尺度序列来逐步的提取特征(如图14)。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第30张图片
图 14 [74]中提出的多尺度CNN架构,利用一个尺度序列预测深度、法向来逐步将输出调优,并且对一个RGB的输入执行语义分割。

另一个重要的工作是Bian等人[76]提出的网络,这个网络包含n个FCN,可以处理不同尺度的问题。该网络提取的特征将融合在一起(先使用合适的填充方法进行必要的上采样),然后通过一个额外的卷积层之后得到最终的分割结果。这个工作的主要贡献便是这个两步的学习过程,首先,独立的训练每个网络,然后,这些网络将结合,最后一层将被微调。这种多尺度的模型可以高效地添加任意数量的训练好的网络进来。

4.2.4 特征融合

再分割问题中,向全卷积神经网络架构中加入上下文信息的另一种方式便是进行特征融合。特种融合技术将一个全局特征(由某网络中较前面的层提取得到)与一个相对局部的特征映射(后边的层提取得)相结合。常见的架构如原始FCN网络利用跳跃连接的方式进行延迟特征融合,也是通过将不用层产生的特征映射相结合(图15)
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第31张图片
图 15 类似跳跃连接的架构,对特征映射进行延迟融合,其类似于在每个层上做出独立的预测后再对结果进行融合。图来自[84]。(注:每个层均有“分割结果”,最后融合之)

另一种方法便是提前融合,这一方法来自ParseNet[77]中的上下文模块。全局特征被反池化为与局部特征相同的尺寸,然后,将这两种特征进行串联后得到一个合并的特征,输入到下一层或者直接用于分类器的学习。如图16所示。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第32张图片
图 16 ParseNet中的上下文模块示意图。较前面的层产生的全局特征与其下一层产生的特征相结合,以此来添加上下文的信息。图来自[77]。

SharpMask[84] 这个工作继续发展了这种特征融合的想法,其引入了一种先进的调优模块来将前面层产生的特征合并到后面的层,这个模块使用的是一种自上而下的架构。由于其重点关注实例分割方面,所以这个工作我们将在后面章节介绍。

4.2.5 循环神经网络RNN

我们注意到,CNN网络在非一维数据如图像等的处理上取得了成功,但是,这些网络依赖于手工设计的核,将网络限制于局部上下文中。而得益于其拓扑结构,循环神经网络成功地应用到了对长期或短期序列的建模上。这样,通过将像素级别的以及局部的信息联系起来,RNN可以成功地建模全局上下文信息并改善语义分割结果。但是,一个重要的问题便是,图片中缺乏自然的序列结构,而标准的RNN架构关注的恰恰是一维的输入。
语义分割-深度学习算法总结(2018)-论文翻译(附带相关数据集)_第33张图片
图 17 ReSeg网络示意图。VGG-16的卷积层以第一层中的蓝色和黄色层展示,余下的架构基于微调目的的ReNet,图取自[78]。

基于面向分类的ReNet模型,Visin等人[19]提出了ReSeg模型[78]用于语义分割,如图17所示。在本方法中,输入图像在第一层VGG-16层中被处理,特征映射结果送入一个或更多的ReNet层中来进行微调。最终,特征映射的尺寸被调整,使用的是基于反卷积的上采样层。在本方法中,门循环单元(GRU)被用来平衡占用空间与计算复杂度。一般的RNN在建模长期依赖关系时表现不好,主要是因为梯度消失问题的存在。由此产生的长短期记忆网络(LSTM)[97] 和GRU [98]是该领域目前最好的两种方法,可以避免以上问题。

受ReNet架构的启发,有人为场景标注问题提出了一种新型的长短期记忆上下文融合模型(LSTM-CF)[99]。该方法使用了两种不同的数据源:RGB信息和深度信息。基于RGB的部分依赖于DeepLab架构[29]的变体,串联了三种不同尺度的特征来丰富特征表达(由[100]处获得启发)。全局信息在两个部分(深度信息部分与光学信息部分)都是竖直的,最终这两种竖直的上下文信息在水平方向上被融合。

我们注意到,对图像全局上下文信息的建模与二维循环方法很有关系,只需在输入图像上按照水平和竖直方向分别将网络展开。基于相同的想法,Byeon等人[80]提出了简单的二维的基于LSTM的架构,其中的输入图像被分割为无重叠的窗口,然后将其送入四个独立的LSTM记忆单元。该工作突出贡献是其计算复杂度较低、运行与单个CPU以及其模型的简单性。

另一种捕获全局信息的方法依赖于更大的输入窗口的使用,这样就可以建模更大范围内的上下文信息。但是,这也降低了图像的分辨率,而且引入了其他类似于窗口重叠等的问题。然而,Pinheiro等人[81] 引入了循环卷积神经网络(rCNN)来使用不同的窗口大小循环地训练,这相当于考虑了之前层中的预测信息。通过这种方法,预测出的标签将自动地平滑,从而使网络表现更好。

无向循环图(UCG)同样被用来建模图像上下文信息从而用于语义分割[82]。但是,RNN并不直接适用于UCG,为了解决这个问题,无向循环图被分解为了多个有向图(DAG)。在本方法中,图像在三个不同的层中被处理,分别是:CNN处理得到图像的特征映射,DAG-RNN对图像的上下文依赖信息进行建模,反卷积层将特征映射上采样。这个工作说明了RNN如何可以与图相结合,被用来建模长期范围内的上下文依赖,并超过已有的最优方法。

4.3 实例分割

实例分割被认为是语义分割的下一步,与此同时其相对于其他底层像素级别分割技术来说是最具挑战性的。

4.4 RGB-D数据(带有深度)

4.5 三维数据

4.6 视频序列

五、讨论

5.1 评价指标

运行时间、占用内存、准确率。

  • 像素准确率(PA):这是最简单的指标,仅仅计算正确分类的像素数量与所有像素数量的比值
  • 像素准确率平均值(MPA):对PA的轻微改进版本,正确分类像素的比例是按类计算的,最终由类总数取平均
  • 平均交并比(MIoU):这是用于分割问题的标准评价指标,其计算的是两个集合的**交集与其并集的重合比例,**在本问题中,其计算的便是真实分割与系统预测的分割之间的交并比。这个比例可以被重新定义为真实正例(交集)的数量除以总数量(包括真实正例、错误负例、以及错误正例(并集))。IoU也是按类计算最后取平均。
  • 频率加权交并比(FWIoU):是对MIoU的改进,对每个类别按照重要性进行加权,重要性来自于其出现的频率。

5.3 总结

说了那么多,其实就是deeplab这个模型好一点。

5.4 未来研究方向

基于以上回顾过的代表了目前最高水平的方法,我们给出了一系列的未来研究的可能的方向。

  • 1)三维数据集:充分利用三维数据的一些方法已经开始出现,但是,即使是最新的方案,仍然缺乏对于最重要的构成成分之一即数据的考虑。目前急需一个大规模三维语义分割数据集,但这相对于其低维部分来说是较难创建的。虽然已经有了一些不错的工作,仍然需要更多、更好、更富变化的数据集的出现。值得注意的是,真实世界的三维数据是极其重要的,因为目前几乎所有的工作都是使用的合成数据集。三维数据重要性的一个证明便是,2018年ILSVRC将会创建三维数据。
  • 2)序列数据集:三维数据集上大规模数据集缺乏的问题同样影响到了视频序列分割问题。目前仅有少数几个数据集是基于序列的,这些数据集对于利用时间序列信息的方法的发展很有利。从本质上将二维及三维高质量数据联系起来必将引领新的研究方向。
  • 3)使用图卷积网络(GCN)对点云进行分割:如之前所述,处理三维数据如点云等目前尚未解决,由于点云内在的无序性及非结构性,传统的架构如CNN等不能直接予以应用,除非使用某种离散化手段使其结构化。一个靠谱的研究方向便致力于将点云处理为图,然后在其上应用卷积[109,110,111]。这种做法的好处便是在不量化数据的基础上保留了每个维度上的空间信息。
  • 4)上下文知识:虽然FCN是语义分割领域中的一种坚实的方法,但是FCN网络缺乏对于上下文等特征的建模,而这些信息有可能会提高准确率。将CRF重写为RNN来创造一种端对端的解决方法看起来是一个靠谱的方法,可以提高真实生活场景下的性能。多尺度及特征融合方法也取得了较大的进展。总之,这些方法已经取得了不小的进步,但是仍然有许多问题亟待解决。
  • 5)实时分割:在很多应用场景下,准确率是重要的,但是,能够处理达到常见的摄像机帧率(至少25帧每秒)的输入速度也是很关键的。目前多数的方法远远达不到这个帧率,比如,FCN-8处理一张低分辨率的PASCALVOC数据集中的图像需要100ms,同时,CRFasRNN需要500ms。因此,接下来几年,我们期待会有一系列的工作关注于实时处理的限定,这些工作将必须在准确率与运行时间之间寻求一个平衡。
  • 6)存储空间:某些平台受限于其存储空间。分割网络一般需要较大的存储空间,从而可以同时进行推理与训练。为了适应各种设备,网络必须要简单。虽然这可以通过降低复杂性(一般会牺牲准确率)来简单地实现,但是还是可以采取另外的办法。剪枝是一种靠谱的研究方向,可以用来简化网络,使得网络在保留多数信息的同时变得轻量化,也因此同时保留了原网络的准确率。
  • 7)序列数据的时间一致性:一些方法解决了视频或序列分割的问题,但是他们有些未利用时间序列信息来提高准确率或效率。然而,没有一种方法解决了一致性的问题。对于一个应用在视频流上的分割系统来说,一致性信息是重要的,不仅可以逐帧地处理数据,还可以对整个片段的处理保持一致,而不需要通过平滑为序列预测出的像素级别的标签而产生人工的信息。
  • 8)多视角整合:在最近提出的分割网络上应用多视角信息目前仅仅限于RGB-D摄像机相关的场景,尤其是致力于单一物体分割的情况。

六、总结

别人的始终是别人总结的,还需自己总结啊。(待续。。。)

你可能感兴趣的:(深度学习)