验证码识别实战

验证码识别实战

(1)数据集

若想正确识别 分割?—— 不具备通用性
整体识别?——
NZPP——> [13,25,15,15]——> []用独热码的形式
验证码识别实战_第1张图片
即 NZPP -> [13, 25, 15, 15]
[4, 26]
-> [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]]

(2)对数据集中的特征值、目标值怎么使用

(3)如何分类

如何衡量损失? mnist分类——交叉熵
softmax映射 +交叉熵
这里应用sigmoid交叉熵

(4)流程分析
1)读取图片数据
filename -> 标签值
2)解析csv文件,将标签值NZPP->[13, 25, 15, 15]
3)将filename和标签值联系起来
4)构建卷积神经网络->y_predict
5)构造损失函数
6)优化损失
7)计算准确率
8)开启会话、开启线程

最后代码如下 并输入了一张图片进行测试

import tensorflow as tf
import glob
import pandas as pd   #涉及文件读取(csv)
import numpy as np
import os

tf.app.flags.DEFINE_integer("is_train", 2, "指定是否是训练模型,还是拿数据去预测")
FLAGS = tf.app.flags.FLAGS





def read_pic():       #读取图片数据

    #1.构造文件名队列
    #获取文件名列表,以前都是用os进行拼接
    file_names = glob.glob("./GenPics/*.jpg")
    file_names_test = glob.glob("./test/*.jpg")
    #print("file_names:\n", file_names)
    file_queue = tf.train.string_input_producer(file_names)
    file_queue_test = tf.train.string_input_producer(file_names_test)
    #2.读取与解码
    #构造读图片的阅读器
    reader = tf.WholeFileReader()

    #读取阶段
    filename, image = reader.read(file_queue)
    filename_test, image_test = reader.read(file_queue_test)

    #解码阶段
    decoded = tf.image.decode_jpeg(image)
    decoded_test = tf.image.decode_jpeg(image_test)


    #更新形状,将图片形状确定下来以方便批处理
    decoded.set_shape([20,80,3])   #高 宽 通道数
    #print("decoded:\n",decoded)
    decoded_test.set_shape([20,80,3])

    #修改图片的类型  因为此时是unit8,但输入卷积层的数据必须是float32或者float64
    image_cast = tf.cast(decoded, tf.float32)
    image_cast_test = tf.cast(decoded_test, tf.float32)

    #3.批处理
    filename_batch, image_batch = tf.train.batch([filename, image_cast],batch_size=100, num_threads=1, capacity=100)
    filename_batch_test, image_batch_test = tf.train.batch([filename_test, image_cast_test],batch_size=1, num_threads=1, capacity=1)




    return filename_batch, image_batch,filename_batch_test, image_batch_test


#接下来解析csv文件,建立文件名和标签值的对应表格
def parse_csv():
    # 读取文件
    csv_data = pd.read_csv("./Genpics/labels.csv", names=["file_num", "chars"], index_col="file_num")

    # 根据字母生成对应数字
    # 如NZPP——>[13,25,15,15]
    # 创建空列表  遍历
    labels = []
    for label in csv_data["chars"]:
        #    print(label)
        letter = []
        for word in label:
            #        print(word)
            letter.append(ord(word) - ord("A"))  # 将转好的数字放入letter
        labels.append(letter)  # 将letter放入label

    csv_data["labels"] = labels


    return csv_data








#将文件名与csv_data一一对应通过文件名查表
def filename2label(filename, csv_data):
    #print(filename)

    labels = []

    for file_name in filename:
        #filter方法判断是否是数字
        file_num = "".join(list(filter(str.isdigit, str(file_name))))
        #查表
        target = csv_data.loc[int(file_num), "labels"]
        labels.append(target)

    #print(labels)

    return  np.array(labels)



#定义权重生成器
def create_weights(shape):
    return tf.Variable(initial_value=tf.random_normal(shape=shape,stddev=0.01))






#构建卷积神经网络,得到y_predict
def create_model(x):
    #x的形状为[None,20,80,3]
    # 1)第一个卷积大层
    with tf.variable_scope("conv1"):
        # 卷积层

        # 定义filter和偏置
        conv1_weights = create_weights(shape=[5, 5, 3, 32])
        conv1_bias = create_weights(shape=[32])
        conv1_x = tf.nn.conv2d(input=x, filter=conv1_weights, strides=[1, 1, 1, 1], padding="SAME") + conv1_bias

        # 激活层
        relu1_x = tf.nn.relu(conv1_x)

        # 池化层....5
        pool1_x = tf.nn.max_pool(value=relu1_x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

    # 2)第二个卷积大层
    with tf.variable_scope("conv2"):
        # x的形状为[None,10,40,32]
        # 卷积层
        # 定义filter和偏置
        conv2_weights = create_weights(shape=[5, 5, 32, 64])
        conv2_bias = create_weights(shape=[64])
        conv2_x = tf.nn.conv2d(input=pool1_x, filter=conv2_weights, strides=[1, 1, 1, 1], padding="SAME") + conv2_bias

        # 激活层
        relu2_x = tf.nn.relu(conv2_x)

        # 池化层
        pool2_x = tf.nn.max_pool(value=relu2_x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

    # 3)全连接层
    # x的形状为[None,5,20,64]
    with tf.variable_scope("full_connection"):
        # 首先做形状修改
        # [None, 5, 20, 64] - ------>[None, 5 * 20 * 64]
        # [None, 5 * 20 * 64] * [] = [None, 4*26]   所以权重为[5 * 20 * 64, 4*26]
        x_fc = tf.reshape(pool2_x, shape=[-1,5 * 20 * 64])  # 注意reshape没有None的用法  需要用-1
        weights_fc = create_weights(shape=[5 * 20 * 64, 4*26])
        bias_fc = create_weights(shape=[4*26])
        y_predict = tf.matmul(x_fc, weights_fc) + bias_fc

    return y_predict









if __name__ == "__main__":

    filename, image, filename_test, image_test = read_pic()    #变量接出来
    csv_data = parse_csv()

    #1.准备数据
    x = tf.placeholder(tf.float32, shape=[None,20,80,3])
    y_true = tf.placeholder(tf.float32, shape=[None,104])  #因为计算损失的时候需要一维


    #2.构建模型
    y_predict = create_model(x)


    #3.构造损失函数
    loss_list = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_predict)
    loss = tf.reduce_mean(loss_list)


    #4.优化损失
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)

    #5.计算准确率
    equal_list = tf.reduce_all(
    tf.equal(tf.argmax(tf.reshape(y_predict, shape=[-1, 4, 26]), axis=2),
             tf.argmax(tf.reshape(y_true, shape=[-1, 4, 26]), axis=2)), axis=1)

    accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))





    #初始化变量
    init = tf.global_variables_initializer()



    #(2)收集要显示的变量
    #先收集损失和准确率
    tf.summary.scalar("losses", loss)
    tf.summary.scalar("accuracy",accuracy)
    tf.summary.scalar("accuracy", accuracy)
    #(3)合并所有变量op
    merged = tf.summary.merge_all()
    #创建模型保存与加载
    saver = tf.train.Saver()



    #开启会话
    with tf.Session() as sess:
        #初始化变量
        sess.run(init)


        #开启线程
        coord=tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess,coord=coord)

        # (1)创建一个events文件实例
        file_writer = tf.summary.FileWriter("./tmp/summary2/", graph=sess.graph)

        # 加载模型
        if os.path.exists("./tmp/modelckpt2/checkpoint"):
            saver.restore(sess, "./tmp/modelckpt2/cnn_model")  # 注意modelckpt2这个文件夹要自己建立
            # 也就是说 模型保存和加载的时候 也就是saver.save或saver.restore的路径需要自己建立 否则会蓝屏
            # 但是创建envents实例化的路径可以不用自己建立

        if FLAGS.is_train == 1:
            for i in range(1000):
                filename_value, image_value = sess.run([filename, image])
                #print("filename_value:\n", filename_value)
                print("image_value:\n", image_value)

                labels = filename2label(filename_value, csv_data)
                #将标签值转换为one-hot
                labels_value = tf.reshape(tf.one_hot(labels, depth=26), [-1, 4*26]).eval()

                _, error, accuracy_value = sess.run([optimizer, loss, accuracy],feed_dict={x:image_value, y_true:labels_value})

                print("第%d次训练后损失为%f,准确率为%f" % (i+1, error, accuracy_value))

                # 运行合变量op,写入事件文件当中
                summary = sess.run(merged, feed_dict={x:image_value, y_true:labels_value})
                file_writer.add_summary(summary, i)
                if i % 100 == 0:
                    saver.save(sess, "./tmp/modelckpt2/cnn_model")

        else:
            #如果不是训练,则是用测试集对模型进行测试
            for i in range(2):
                filename_value_test, image_value_test = sess.run([filename_test, image_test])
                labels_test = filename2label(filename_value_test, csv_data)
                labels_value_test = tf.reshape(tf.one_hot(labels_test, depth=26), [-1, 4 * 26]).eval()
                accuracy_value = sess.run(accuracy,feed_dict={x: image_value_test, y_true: labels_value_test})

                print("真实值为\n" , labels_test )

                y_predict_final = tf.argmax(tf.reshape(y_predict, shape=[-1, 4, 26]), axis=2)

                print("预测值为\n",sess.run(y_predict_final,feed_dict={x: image_value_test, y_true: labels_value_test}))

        #回收线程
        coord.request_stop()
        coord.join(threads)


你可能感兴趣的:(python学习)