给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。
思路:
对于根节点来说有两种情况:
1)p与q分别位于根节点的左右子树上
2)p与q都位于根节点的一颗子树上
于是递归遍历左右子树,返回条件为空或者当前节点等于p或者q。
如果左右子树的返回值都不为NULL,则说明p,q分别位于两颗子树上,返回根节点。
如果有一颗(只可能有一颗)子树的返回值不为NULL,那么说明p,q都位于这半边子树上,由递归可知,该返回的节点就是公共祖先。
AC代码:(C++):
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (!root || root == p || root == q) return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if (left && right) return root;
if (left != NULL)
return left;
else
return right;
}
};