- Anaconda Tensorflow2.0稳定版安装教程
YeahQing
Anaconda安装Anaconda安装国内因为某些原因,可以在清华镜像站下载。Anaconda默认自带python,所以无需提前下载python清华镜像站Anaconda官网image-20191124164832545.pngimage-20191124165041433.png此处两个高级设置的解释:将Anaconda添加到环境变量中。(无需勾选)可以让其他IDE检测到Anaconda的Py
- Tensorflow2.0 查看网络中每层的名称、权重及特征图绘制
cofisher
Tensorflow2.0深度学习PHM项目实战--建模篇深度学习pythontensorflow
文章目录项目介绍实现过程1、构建网络2、查看每层名称3、查看指定层的权值4、特征图绘制项目介绍在网络训练过程中,我们经常需要查看某层权重的变化过程,这其实只需要简单的API就能实现。为了方便演示,我们使用迁移学习到的MobileNetV2网络。实现过程1、构建网络我们将冻结迁移到的MobileNetV2网络,然后将它最后的分类层换成我们自己定义的分类层即可。mobile=tf.keras.appl
- Tensorflow2.0 评价模型复杂度:参数量、FLOPs 和 MACC 计算
cofisher
深度学习PHM项目实战--建模篇tensorflow深度学习卷积python
文章目录项目介绍代码实现:对于迁移学习网络(复杂)1、迁移学习不带分类层的简化版MobileNetV2网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC代码实现:对于自编写网络(简单)1、导入网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC项目介绍在论文写作时,我们经常会对所提出模型的复杂度进行分析,主要用到的评价指标包括参数量、FLOPs和MACC,它们的计
- Tensorflow2.0 对自己的图片数据集进行分类
cofisher
python深度学习PHM项目实战--建模篇tensorflowpython深度学习
文章目录项目介绍数据集网络模型代码实现1、导入需要的库2、定义图像加载和预处理函数3、定义构造Dataset数据集函数4、构造Dataset数据集5、构建网络6、初始化优化器和损失函数7、定义损失函数8、定义梯度下降函数9、保留Checkpoint文件10、训练过程11、保存模型到.h5文件中12、绘制准确率曲线
- 为使用tensorflow2.0 以上版本。卸载cuda8.0 安装cuda10.1 cudnn7.6
xuanxi
配置一个虚拟环境名为tfkeras:python3.5-3.8+cuda10.1+tensorflow-gpu==2.1-2.3+cudnn7.6>condacreate-ntf2keraspython=3.8#先创建一个名为tfkeras,环境为python3.8的环境下一步开始在tfkeras这个虚拟环境下面装package卸载cuda8.0因为winserver2012原本装的是cuda8.
- Tensorflow2.0实现像素归一化与频谱归一化,一次彻底地梳理
人工智能T哥
一、前言归一化技术的改进是生成对抗网络(GenerativeAdversarialNetworks,GAN)中众多改进的一种,本文介绍常用于当前GAN中的像素归一化(Pixelnormalization,或称为像素规范化)和频谱归一化(Spectralnormalization,或称频谱规范化),在高清图片生成中,这两种归一化技术得到了广泛使用,最后使用Tensorflow2实现像素归一化和频谱归
- tensorflow2.0的cpu与gpu运行时间对比
尘埃飞舞
人工智能pythontensorflow
文章目录前言一、导入环境二、定义函数三、测试前言这里运用一个自定义大小的矩阵数据计算,来测试gpu与cpu运算时间的对比。以下为实现方法一、导入环境示例:pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。#设置显卡内存使用率,根据使用率占用importosos.environ["TF_FORCE_GPU_ALLOW_GROWTH"]="true"importtensor
- 如何用 Python 和 Tensorflow 2.0 神经网络分类表格数据?
nkwshuyi
以客户流失数据为例,看Tensorflow2.0版本如何帮助我们快速构建表格(结构化)数据的神经网络分类模型。变化表格数据,你应该并不陌生。毕竟,Excel这东西在咱们平时的工作和学习中,还是挺常见的。在之前的教程里,我为你分享过,如何利用深度神经网络,锁定即将流失的客户。里面用到的,就是这样的表格数据。时间过得真快,距离写作那篇教程,已经一年半了。这段时间里,出现了2个重要的变化,使我觉得有必要
- Tensorflow2.0笔记 - where,scatter_nd, meshgrid相关操作
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
本笔记记录tf.where进行元素位置查找,scatter_nd用于指派元素到tensor的特定位置,meshgrid用作绘图的相关操作。importtensorflowastfimportnumpyasnpimportmatplotlib.pyplotasplttf.__version__#where操作查找元素位置#输入的tensor是True,False组成的tensortensor=tf.
- huggingface 的trainer训练框架优势
be_humble
人工智能深度学习python
背景HuggingfaceTransformers是基于一个开源基于transformer模型结构提供的预训练语言库,它支持Pytorch,Tensorflow2.0,并且支持两个框架的相互转换。框架支持了最新的各种NLP预训练语言模型,使用者可以很快速的进行模型的调用,并且支持模型furtherpretraining和下游任务fine-tuning。Transformers库写了了一个trans
- Tensorflow2.0笔记 - Tensor的限值clip操作
亦枫Leonlew
TensorFlow2.0笔记tensorflow人工智能python深度学习
本笔记主要记录使用maximum/minimum,clip_by_value和clip_by_norm来进行张量值的限值操作。importtensorflowastfimportnumpyasnptf.__version__#maximum/minimumz做上下界的限值tensor=tf.random.shuffle(tf.range(10))print(tensor)#maximum(x,y,
- Tensorflow2.0基础-笔记-图像识别-猫狗数据集
二流子学程序
tensorflow2.0tensorflow图像识别
importtensorflowastfimportmatplotlib.pyplotaspltimportnumpyasnp%matplotlibinlineimportglobimage_filenames1=glob.glob('./DataSet/猫狗数据集_2000/dc_2000/train/cat/*.jpg')image_filenames2=glob.glob('./DataSe
- Tensorflow2.0笔记 - tensor排序操作
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习tensorflow2
本笔记主要记录sort,argsort,以及top_k操作,加上一个求TopK准确度的例子。importtensorflowastfimportnumpyasnptf.__version__#sort,argsort#对1维的tensor进行排序tensor=tf.random.shuffle(tf.range(10))print(tensor)#升序print("======tf.sort(di
- Tensorflow2.0笔记 - tensor的padding和tile
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能深度学习python
本笔记记录tensor的填充和tile操作,对应tf.pad和tf.tileimporttensorflowastfimportnumpyasnptf.__version__#pad做填充#tf.pad(tensor,paddings,mode='CONSTANT',name=None)#1维tensor填充tensor=tf.random.uniform([5],maxval=10,dtype=
- 2019年上半年收集到的人工智能开源框架介绍文章
城市中迷途小书童
2019年上半年收集到的人工智能开源框架介绍文章TensorFlow基本使用TensorFlow.js:让你在浏览器中也能玩转机器学习人工智能学习框架TensorFlow渐近分析TensorFlow什么的都弱爆了,强者只用Numpy搭建神经网络TensorFlow框架的开源工具箱Ludwig人工智能学习框架TensorFlow必须掌握和了解的数学基础TensorFlow2.0来了9步教你用NumP
- conda多虚拟环境的搭建与切换
溯源006
pythonconda
在Python开发中,很多时候我们希望每个应用有一个独立的Python环境(比如应用1需要用到TensorFlow1.X,而应用2使用TensorFlow2.0)。这时,Conda虚拟环境即可为一个应用创建一套“隔离”的Python运行环境。使用Python的包管理器conda即可轻松地创建Conda虚拟环境。常用命令如下【1】:condacreate--name[env-name]#建立名为[e
- Tensorflow2.0笔记 - 范式norm,reduce_min/max/mean,argmax/min, equal,unique
亦枫Leonlew
TensorFlow2.0pythontensorflow笔记人工智能
练习norm,reduce_min/max,argmax/min,equal,unique等相关操作。范数主要有三种:importtensorflowastfimportnumpyasnptf.__version__#范数参考:https://blog.csdn.net/HiWangWenBing/article/details/119707541tensor=tf.convert_to_tens
- pythorch及tensorflow2.0以上版本的安装
Rayne_tab
前言从tensorflow1.X用到现在了,pytorch也是去年接触的,这两个框架都属于更新比较快的,因此难免更新自己的版本。最头疼的莫过于CUDA,cudnn这些东西的版本匹配。以前看了不少教程,让我们安装cuda,cudnn,配置环境变量。其实,这两个框架的GPU版本配置早就很简单很简单了!根本不用下载CUDA,cudnn这些!准备工作要准备的就两点:1.Anaconda/Miniconda
- Tensorflow2.0笔记 - tensor的合并和分割
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
主要记录concat,stack,unstack和split相关操作的作用importtensorflowastfimportnumpyasnptf.__version__#concat对某个维度进行连接#假设下面的tensor0和tensor1分别表示4个班级35名同学的8门成绩和两个班级35个同学8门成绩tensor0=tf.ones([4,35,8])tensor1=tf.ones([2,3
- 所有情况下tensorflow2.0深度学习环境最快安装方法!
小火龙G
首先,你需要下载一个miniconda安装记得添加环境变量就是在安装过程中看到path这个单词的选项的时候就给勾选上就行然后启动CMD,不会启动CMD请百度在CMD内输入以下命令condalist如果有类似界面即代表环境正确添加如果未显示类似界面请重新安装(比手动path易懂)CMD然后就可以安装了输入condainstalltensorflow-gpu==2.0.0然后等待运行完成就行,如果不能
- 基于Python TensorFlow keras.Sequential深度神经网络的深度学习回归
疯狂学习GIS
1写在前面前期一篇博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/114001720)详细介绍了基于TensorFlowtf.estimator接口的深度学习网络;而在TensorFlow2.0中,新的Keras接口具有与tf.estimator接口一致的功能,且其更易于学习,对于新手而言友好程度更高;在TensorFlow官网
- Tensorflow2.0笔记 - 不使用layer方式,简单的MNIST训练
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
本笔记不使用layer相关API,搭建一个三层的神经网络来训练MNIST数据集。前向传播和梯度更新都使用最基础的tensorflowAPI来做。importtensorflowastffromtensorflowimportkerasfromtensorflow.kerasimportdatasetsimportnumpyasnpdefload_mnist():path=r'./mnist.npz
- Tensorflow2.0笔记 - Broadcasting和Tile
亦枫Leonlew
TensorFlow2.0笔记tensorflow2python深度学习人工智能
关于broadcasting的介绍,参考这篇文章。https://blog.csdn.net/python_LC_nohtyp/article/details/104097417importtensorflowastfimportnumpyasnptf.__version__#关于broadcasting的介绍,参考这篇文章#https://blog.csdn.net/python_LC_noht
- Tensorflow2.0笔记 - 基础数学运算
亦枫Leonlew
TensorFlow2.0笔记tensorflow人工智能深度学习python
本笔记主要记录基于元素操作的+,-,*,/,//,%,**,log,exp等运算,矩阵乘法运算,多维tensor乘法相关运算importtensorflowastfimportnumpyasnptf.__version__#element-wise运算,对应元素的+,-,*,/,**,//,%tensor1=tf.fill([3,3],4)tensor2=tf.ones([3,3],dtype=t
- Tensorflow2.0笔记 - 修改形状和维度
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python计算机视觉深度学习
本次笔记主要使用reshape,transpose,expand_dim,和squeeze对tensor的形状和维度进行操作。importtensorflowastfimportnumpyasnptf.__version__#tensor的shape和维数获取#假设下面这个tensor表示4张28*28*3的图片tensor=tf.random.uniform([4,28,28,3],minval
- Tensorflow2.0笔记 - Tensor的数据索引和切片
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
主要涉及的了基础下标索引"[]",逗号",",冒号":",省略号"..."操作,以及gather,gather_nd和boolean_mask的相关使用方法。importtensorflowastfimportnumpyasnptf.__version__tensor=tf.random.uniform([1,5,5,3],minval=10,maxval=30,dtype=tf.int32)pr
- Tensorflow2.0笔记 - 创建tensor
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
tensor创建可以基于numpy,list或者tensorflow本身的API。笔记直接上代码:importtensorflowastfimportnumpyasnpimportmatplotlib.pyplotasplttf.__version__#通过numpy创建tensortensor0=tf.convert_to_tensor(np.ones([2,3]))print(tensor0)
- Tensorflow2.0笔记 - 基本数据类型,数据类型转换
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能深度学习
【TensorFlow2.0】(1)tensor数据类型,类型转换_tensorflowtensor转int-CSDN博客文章浏览阅读1.5w次,点赞8次,收藏28次。各位同学好,今天和大家分享一下TensorFlow2.0中的tensor数据类型,以及各种类型之间的相互转换方法。1.tf.tensor基础操作scaler标量:1.2vector向量:[1.2]、[1.1,2.2,3.3]注意:此
- 学点深度学习
zd200572
IT深度学习tensorflow
最近尝试入门点深度学习的内容,首先来个框架试试嘛,tensorflow2.0的GPU要求已经是nvida算力3.5以上的设备,当然,如果你能过GFW,tesla据说可以白嫖。想用自己的设备咋办呢,只有单纯CPU上了,那这速度就无语了,慢上几十倍,毕竟再差的GPU的核心数,也是cpu的几十倍,所以使用opencl,苹果metal等的框架是个不错的选择,在知乎上发现了一个答主推荐plaidml这个框架
- 2023年终总结|回顾学习Tensorflow、Keras的历程
缘起性空、
人工智能学习kerastensorflow深度学习python
2023年4月,初探TensorFlow2.0,对比了1.0版本的差异。接着,学习了TensorFlow2.0的常量矩阵、四则运算以及常用函数。学习了数据切割、张量梯度计算、遍历元素、类别索引转换等技巧,并掌握了CNN输出特征图形状的计算方法。在数据处理方面,学习了数据切割、张量梯度计算和遍历元素的技巧,这些技能在处理大规模数据集时极为重要。此外,还掌握了如何计算CNN输出特征图形的形状,这为优化
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。