DGL官方教程--Tree-LSTM in DGL

Note:
Click here to download the full example code

Tutorial: Tree-LSTM in DGL

Author: Zihao Ye, Qipeng Guo, Minjie Wang, Jake Zhao, Zheng Zhang
在本教程中,您将学习使用Tree-LSTM网络进行情感分析。Tree-LSTM是长短期内存(LSTM)网络到树结构网络拓扑的概括。

Tree-LSTM结构首先由Kai等人引入。等人在ACL 2015论文中:树状结构的长期短期记忆网络的改进的语义表示。核心思想是通过将链结构LSTM扩展为树结构LSTM来为语言任务引入语法信息。依赖树和选区树技术被用来获得“潜在树”。

训练Tree-LSTM的挑战是分批处理—这是机器学习中加速优化的标准技术。但是,由于树木通常具有不同的形状,因此平行化是不平凡的。DGL提供了一种替代方法。将所有树合并为一个图,然后在每棵树的结构的引导下,诱导消息通过它们。

The task and the dataset

这里的步骤,使用 Stanford Sentiment Treebank在 dgl.data。数据集提供了细粒度的树级情感注释。有五类:非常消极,消极,中立,积极和非常积极,它们表示当前子树中的情绪。选区树中的非叶子节点不包含单词,因此请使用特殊 PAD_WORD标记来表示它们。在训练和推理期间,它们的嵌入将被屏蔽为全零。
DGL官方教程--Tree-LSTM in DGL_第1张图片
该图显示了SST数据集的一个样本,这是一个选区分析树,其节点标记有情感。为了加快处理速度,请构建一个包含五个句子的小集合,然后看看第一个句子。

import dgl
from dgl.data.tree import SST
from dgl.data import SSTBatch

# Each sample in the dataset is a constituency tree. The leaf nodes
# represent words. The word is an int value stored in the "x" field.
# The non-leaf nodes have a special word PAD_WORD. The sentiment
# label is stored in the "y" feature field.
trainset = SST(mode='tiny')  # the "tiny" set has only five trees
tiny_sst = trainset.trees
num_vocabs = trainset.num_vocabs
num_classes = trainset.num_classes

vocab = trainset.vocab # vocabulary dict: key -> id
inv_vocab = {v: k for k, v in vocab.items()} # inverted vocabulary dict: id -> word

a_tree = tiny_sst[0]
for token in a_tree.ndata['x'].tolist():
    if token != trainset.PAD_WORD:
        print(inv_vocab[token], end=" ")

out:

Preprocessing...
Dataset creation finished. #Trees: 5
the rock is destined to be the 21st century 's new `` conan '' and that he 's going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .

Step 1: Batching

使用batch()API 将所有树添加到一张图中。

import networkx as nx
import matplotlib.pyplot as plt

graph = dgl.batch(tiny_sst)
def plot_tree(g):
    # this plot requires pygraphviz package
    pos = nx.nx_agraph.graphviz_layout(g, prog='dot')
    nx.draw(g, pos, with_labels=False, node_size=10,
            node_color=[[.5, .5, .5]], arrowsize=4)
    plt.show()

plot_tree(graph.to_networkx())

DGL官方教程--Tree-LSTM in DGL_第2张图片
您可以阅读有关的定义的更多信息batch(),或跳到下一步:…注意:

**Definition**: A :class:`~dgl.batched_graph.BatchedDGLGraph` is a
:class:`~dgl.DGLGraph` that unions a list of :class:`~dgl.DGLGraph`\ s.

- The union includes all the nodes,
  edges, and their features. The order of nodes, edges, and features are
  preserved.

    - Given that you have :math:`V_i` nodes for graph
      :math:`\mathcal{G}_i`, the node ID :math:`j` in graph
      :math:`\mathcal{G}_i` correspond to node ID
      :math:`j + \sum_{k=1}^{i-1} V_k` in the batched graph.

    - Therefore, performing feature transformation and message passing on
      ``BatchedDGLGraph`` is equivalent to doing those
      on all ``DGLGraph`` constituents in parallel.

- Duplicate references to the same graph are
  treated as deep copies; the nodes, edges, and features are duplicated,
  and mutation on one reference does not affect the other.
- Currently, ``BatchedDGLGraph`` is immutable in
  graph structure. You can't add
  nodes and edges to it. You need to support mutable batched graphs in
  (far) future.
- The ``BatchedDGLGraph`` keeps track of the meta
  information of the constituents so it can be
  :func:`~dgl.batched_graph.unbatch`\ ed to list of ``DGLGraph``\ s.

有关BatchedDGLGraph DGL中的模块的更多详细信息,可以单击类名称。

Step 2: Tree-LSTM cell with message-passing APIs

研究人员提出了两种类型的Tree-LSTM:Child-Sum Tree-LSTM和 N N N-ary Tree-LSTM。在本教程中,您将重点放在将二叉树 LSTM应用于二值化的选区树。此应用程序也称为选区树LSTM。使用PyTorch作为建立网络的后端框架。

N N N树LSTM中,节点处的每个单元 j j j 保持隐藏的表示 h j h_j hj 和一个存储单元 c j c_j cj。那个单位 j 接受输入向量 x j x_j xj 以及子单位的隐藏表示形式: h j l h_{jl} hjl , 1≤ l l l≤N 作为输入,然后更新其新的隐藏表示 h j h_j hj 和存储单元 c j c_j cj 通过:
i j = σ ( W ( i ) x j + ∑ l = 1 N U l ( i ) h j l + b ( i ) ) , ( 1 ) i_j = \sigma\left(W^{(i)}x_j + \sum_{l=1}^{N}U^{(i)}_l h_{jl} + b^{(i)}\right), (1) ij=σ(W(i)xj+l=1NUl(i)hjl+b(i)),(1)
f j k = σ ( W ( f ) x j + ∑ l = 1 N U k l ( f ) h j l + b ( f ) ) , ( 2 ) f_{jk} = \sigma\left(W^{(f)}x_j + \sum_{l=1}^{N}U_{kl}^{(f)} h_{jl} + b^{(f)} \right), (2) fjk=σ(W(f)xj+l=1NUkl(f)hjl+b(f)),(2)
o j = σ ( W ( o ) x j + ∑ l = 1 N U l ( o ) h j l + b ( o ) ) , ( 3 ) o_j = \sigma\left(W^{(o)}x_j + \sum_{l=1}^{N}U_{l}^{(o)} h_{jl} + b^{(o)} \right), (3) oj=σ(W(o)xj+l=1NUl(o)hjl+b(o)),(3)
u j = tanh ( W ( u ) x j + ∑ l = 1 N U l ( u ) h j l + b ( u ) ) , ( 4 ) u_j = \textrm{tanh}\left(W^{(u)}x_j + \sum_{l=1}^{N} U_l^{(u)}h_{jl} + b^{(u)} \right), (4) uj=tanh(W(u)xj+l=1NUl(u)hjl+b(u)),(4)
c j = i j ⊙ u j + ∑ l = 1 N f j l ⊙ c j l , ( 5 ) c_j = i_j \odot u_j + \sum_{l=1}^{N} f_{jl} \odot c_{jl}, (5) cj=ijuj+l=1Nfjlcjl,(5)
h j = o j ⋅ tanh ( c j ) , ( 6 ) h_j = o_j \cdot \textrm{tanh}(c_j), (6) hj=ojtanh(cj),(6)
它可以分解为三个阶段:message_func, reduce_func 以及apply_node_func

Note:
apply_node_func是以前未引入的新节点UDF。在中 apply_node_func,用户指定如何处理节点特征,而不考虑边缘特征和消息。在Tree-LSTM情况下, apply_node_func必须这样做,因为存在(叶子)节点具有 0 0 0传入边,不会使用进行更新 reduce_func

import torch as th
import torch.nn as nn

class TreeLSTMCell(nn.Module):
    def __init__(self, x_size, h_size):
        super(TreeLSTMCell, self).__init__()
        self.W_iou = nn.Linear(x_size, 3 * h_size, bias=False)
        self.U_iou = nn.Linear(2 * h_size, 3 * h_size, bias=False)
        self.b_iou = nn.Parameter(th.zeros(1, 3 * h_size))
        self.U_f = nn.Linear(2 * h_size, 2 * h_size)

    def message_func(self, edges):
        return {'h': edges.src['h'], 'c': edges.src['c']}

    def reduce_func(self, nodes):
        # concatenate h_jl for equation (1), (2), (3), (4)
        h_cat = nodes.mailbox['h'].view(nodes.mailbox['h'].size(0), -1)
        # equation (2)
        f = th.sigmoid(self.U_f(h_cat)).view(*nodes.mailbox['h'].size())
        # second term of equation (5)
        c = th.sum(f * nodes.mailbox['c'], 1)
        return {'iou': self.U_iou(h_cat), 'c': c}

    def apply_node_func(self, nodes):
        # equation (1), (3), (4)
        iou = nodes.data['iou'] + self.b_iou
        i, o, u = th.chunk(iou, 3, 1)
        i, o, u = th.sigmoid(i), th.sigmoid(o), th.tanh(u)
        # equation (5)
        c = i * u + nodes.data['c']
        # equation (6)
        h = o * th.tanh(c)
        return {'h' : h, 'c' : c}

Step 3: Define traversal

定义消息传递功能后,请按正确的顺序触发它们。这与GCN之类的模型有很大的不同,在GCN中,所有节点都同时从上游节点提取消息 。

对于Tree-LSTM,消息从树的叶子开始,并向上传播/处理,直到到达根为止。可视化如下:

DGL定义了一个生成器来执行拓扑排序,每一项都是一个张量,用于记录从底层到根的节点。通过检查以下各项,可以了解并行度:

print('Traversing one tree:')
print(dgl.topological_nodes_generator(a_tree))

print('Traversing many trees at the same time:')
print(dgl.topological_nodes_generator(graph))

out:

Traversing one tree:
(tensor([ 2,  3,  6,  8, 13, 15, 17, 19, 22, 23, 25, 27, 28, 29, 30, 32, 34, 36,
        38, 40, 43, 46, 47, 49, 50, 52, 58, 59, 60, 62, 64, 65, 66, 68, 69, 70]), tensor([ 1, 21, 26, 45, 48, 57, 63, 67]), tensor([24, 44, 56, 61]), tensor([20, 42, 55]), tensor([18, 54]), tensor([16, 53]), tensor([14, 51]), tensor([12, 41]), tensor([11, 39]), tensor([10, 37]), tensor([35]), tensor([33]), tensor([31]), tensor([9]), tensor([7]), tensor([5]), tensor([4]), tensor([0]))
Traversing many trees at the same time:
(tensor([  2,   3,   6,   8,  13,  15,  17,  19,  22,  23,  25,  27,  28,  29,
         30,  32,  34,  36,  38,  40,  43,  46,  47,  49,  50,  52,  58,  59,
         60,  62,  64,  65,  66,  68,  69,  70,  74,  76,  78,  79,  82,  83,
         85,  88,  90,  92,  93,  95,  96, 100, 102, 103, 105, 109, 110, 112,
        113, 117, 118, 119, 121, 125, 127, 129, 130, 132, 133, 135, 138, 140,
        141, 142, 143, 150, 152, 153, 155, 158, 159, 161, 162, 164, 168, 170,
        171, 174, 175, 178, 179, 182, 184, 185, 187, 189, 190, 191, 192, 195,
        197, 198, 200, 202, 205, 208, 210, 212, 213, 214, 216, 218, 219, 220,
        223, 225, 227, 229, 230, 232, 235, 237, 240, 242, 244, 246, 248, 249,
        251, 253, 255, 256, 257, 259, 262, 263, 267, 269, 270, 271, 272]), tensor([  1,  21,  26,  45,  48,  57,  63,  67,  77,  81,  91,  94, 101, 108,
        111, 116, 128, 131, 139, 151, 157, 160, 169, 173, 177, 183, 188, 196,
        211, 217, 228, 247, 254, 261, 268]), tensor([ 24,  44,  56,  61,  75,  89,  99, 107, 115, 126, 137, 149, 156, 167,
        181, 186, 194, 209, 215, 226, 245, 252, 266]), tensor([ 20,  42,  55,  73,  87, 124, 136, 154, 180, 207, 224, 243, 250, 265]), tensor([ 18,  54,  86, 123, 134, 148, 176, 206, 222, 241, 264]), tensor([ 16,  53,  84, 122, 172, 204, 239, 260]), tensor([ 14,  51,  80, 120, 166, 203, 238, 258]), tensor([ 12,  41,  72, 114, 165, 201, 236]), tensor([ 11,  39, 106, 163, 199, 234]), tensor([ 10,  37, 104, 147, 193, 233]), tensor([ 35,  98, 146, 231]), tensor([ 33,  97, 145, 221]), tensor([ 31,  71, 144]), tensor([9]), tensor([7]), tensor([5]), tensor([4]), tensor([0]))

调用**prop_nodes()**以触​​发消息传递:

import dgl.function as fn
import torch as th

graph.ndata['a'] = th.ones(graph.number_of_nodes(), 1)
graph.register_message_func(fn.copy_src('a', 'a'))
graph.register_reduce_func(fn.sum('a', 'a'))

traversal_order = dgl.topological_nodes_generator(graph)
graph.prop_nodes(traversal_order)

# the following is a syntax sugar that does the same
# dgl.prop_nodes_topo(graph)

Note:
在调用之前,请预先prop_nodes()指定 message_funcreduce_func。在示例中,您可以看到内置的“从源复制”和“求和”功能作为消息功能,以及一个“ reduce”功能进行演示。

Putting it together

这是指定Tree-LSTM类的完整代码。

class TreeLSTM(nn.Module):
    def __init__(self,
                 num_vocabs,
                 x_size,
                 h_size,
                 num_classes,
                 dropout,
                 pretrained_emb=None):
        super(TreeLSTM, self).__init__()
        self.x_size = x_size
        self.embedding = nn.Embedding(num_vocabs, x_size)
        if pretrained_emb is not None:
            print('Using glove')
            self.embedding.weight.data.copy_(pretrained_emb)
            self.embedding.weight.requires_grad = True
        self.dropout = nn.Dropout(dropout)
        self.linear = nn.Linear(h_size, num_classes)
        self.cell = TreeLSTMCell(x_size, h_size)

    def forward(self, batch, h, c):
        """Compute tree-lstm prediction given a batch.

        Parameters
        ----------
        batch : dgl.data.SSTBatch
            The data batch.
        h : Tensor
            Initial hidden state.
        c : Tensor
            Initial cell state.

        Returns
        -------
        logits : Tensor
            The prediction of each node.
        """
        g = batch.graph
        g.register_message_func(self.cell.message_func)
        g.register_reduce_func(self.cell.reduce_func)
        g.register_apply_node_func(self.cell.apply_node_func)
        # feed embedding
        embeds = self.embedding(batch.wordid * batch.mask)
        g.ndata['iou'] = self.cell.W_iou(self.dropout(embeds)) * batch.mask.float().unsqueeze(-1)
        g.ndata['h'] = h
        g.ndata['c'] = c
        # propagate
        dgl.prop_nodes_topo(g)
        # compute logits
        h = self.dropout(g.ndata.pop('h'))
        logits = self.linear(h)
        return logits

Main Loop

最后,您可以在PyTorch中编写训练范例。

from torch.utils.data import DataLoader
import torch.nn.functional as F

device = th.device('cpu')
# hyper parameters
x_size = 256
h_size = 256
dropout = 0.5
lr = 0.05
weight_decay = 1e-4
epochs = 10

# create the model
model = TreeLSTM(trainset.num_vocabs,
                 x_size,
                 h_size,
                 trainset.num_classes,
                 dropout)
print(model)

# create the optimizer
optimizer = th.optim.Adagrad(model.parameters(),
                          lr=lr,
                          weight_decay=weight_decay)

def batcher(dev):
    def batcher_dev(batch):
        batch_trees = dgl.batch(batch)
        return SSTBatch(graph=batch_trees,
                        mask=batch_trees.ndata['mask'].to(device),
                        wordid=batch_trees.ndata['x'].to(device),
                        label=batch_trees.ndata['y'].to(device))
    return batcher_dev

train_loader = DataLoader(dataset=tiny_sst,
                          batch_size=5,
                          collate_fn=batcher(device),
                          shuffle=False,
                          num_workers=0)

# training loop
for epoch in range(epochs):
    for step, batch in enumerate(train_loader):
        g = batch.graph
        n = g.number_of_nodes()
        h = th.zeros((n, h_size))
        c = th.zeros((n, h_size))
        logits = model(batch, h, c)
        logp = F.log_softmax(logits, 1)
        loss = F.nll_loss(logp, batch.label, reduction='sum')
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        pred = th.argmax(logits, 1)
        acc = float(th.sum(th.eq(batch.label, pred))) / len(batch.label)
        print("Epoch {:05d} | Step {:05d} | Loss {:.4f} | Acc {:.4f} |".format(
            epoch, step, loss.item(), acc))

out:

TreeLSTM(
  (embedding): Embedding(19536, 256)
  (dropout): Dropout(p=0.5, inplace=False)
  (linear): Linear(in_features=256, out_features=5, bias=True)
  (cell): TreeLSTMCell(
    (W_iou): Linear(in_features=256, out_features=768, bias=False)
    (U_iou): Linear(in_features=512, out_features=768, bias=False)
    (U_f): Linear(in_features=512, out_features=512, bias=True)
  )
)
Epoch 00000 | Step 00000 | Loss 431.9546 | Acc 0.3480 |
Epoch 00001 | Step 00000 | Loss 267.9747 | Acc 0.7289 |
Epoch 00002 | Step 00000 | Loss 491.0571 | Acc 0.6117 |
Epoch 00003 | Step 00000 | Loss 425.6686 | Acc 0.7985 |
Epoch 00004 | Step 00000 | Loss 213.4947 | Acc 0.7436 |
Epoch 00005 | Step 00000 | Loss 188.6720 | Acc 0.8388 |
Epoch 00006 | Step 00000 | Loss 105.7077 | Acc 0.8498 |
Epoch 00007 | Step 00000 | Loss 77.9390 | Acc 0.9121 |
Epoch 00008 | Step 00000 | Loss 60.1893 | Acc 0.9377 |
Epoch 00009 | Step 00000 | Loss 53.4182 | Acc 0.9414 |

要在具有不同设置(例如CPU或GPU)的完整数据集上训练模型,请参阅PyTorch示例。子和树-LSTM也有一个实现。

脚本的总运行时间:(0分钟1.721秒)

下载脚本:3-tree_lstm.py

下载脚本:3-tree_lstm.ipynb

你可能感兴趣的:(处理许多小图)