- 强化学习------DDPG算法
ZPC8210
算法numpymatplotlib
一、前言DeepDeterministicPolicyGradient(DDPG)算法是DeepMind团队提出的一种专门用于解决连续控制问题的在线式(on-line)深度强化学习算法,它其实本质上借鉴了DeepQ-Network(DQN)算法里面的一些思想。论文和源代码如下:论文:https://arxiv.org/pdf/1509.02971.pdf代码:https://github.com/
- 强化学习之 DQN、Double DQN、PPO
JNU freshman
强化学习强化学习
文章目录通俗理解DQNDoubleDQNPPO结合公式理解通俗理解DQN一个简单的比喻和分步解释来理解DQN(DeepQ-Network,深度Q网络),就像教小朋友学打游戏一样:先理解基础概念:Q学习(Q-Learning)想象你在教一只小狗玩电子游戏(比如打砖块)。小狗每做一个动作(比如“向左移动”或“发射球”),游戏会给出一个奖励(比如得分增加)或惩罚(比如球掉了)。小狗的目标是通过不断尝试,
- 强化学习:Deep Deterministic Policy Gradient (DDPG) 学习笔记
烨川南
强化学习学习笔记算法人工智能机器学习
一、DDPG是什么?1.1核心概念DDPG=Deep+Deterministic+PolicyGradientDeep:使用深度神经网络和类似DQN的技术(经验回放、目标网络)Deterministic:输出确定的动作(而不是概率分布)PolicyGradient:基于策略梯度的方法,优化策略以最大化累积奖励1.2算法特点特性说明连续动作空间直接输出连续动作值(如方向盘角度、机器人关节扭矩)离线学
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- Keras环境复现代码(三)
yanyiche_
keras深度学习人工智能
DQN雅达利Breakout强化学习实验要求明确实验目的:学习和实现深度Q学习(DQN),这是一种结合了Q学习和深度神经网络的强化学习算法,用于解决复杂的决策问题。清楚实验原理:1、深度Q学习(DeepQ-Network)将卷积神经网络与Q学习结合,解决高维视觉输入的强化学习问题:2、经验回放:将状态转换存储到缓冲区,打破数据相关性,稳定训练。3、目标网络:定期更新目标Q值计算网络,减少训练中的目
- 【行云流水a】淘天联合爱橙开源强化学习训练框架ROLL OpenRL/openrl PPO-for-Beginners: 从零开始实现强化学习算法PPO 强化学习框架verl 港大等开源GoT-R1
行云流水AI笔记
开源算法
以下是DQN(DeepQ-Network)和PPO(ProximalPolicyOptimization)的全面对比流程图及文字解析。两者是强化学习的核心算法,但在设计理念、适用场景和实现机制上有显著差异:graphTDA[对比维度]-->B[算法类型]A-->C[策略表示]A-->D[动作空间]A-->E[学习机制]A-->F[探索方式]A-->G[稳定性]A-->H[样本效率]A-->I[关键
- 机器学习赋能多尺度材料模拟:前沿技术会议邀您共探
m0_75133639
复合材料机器学习人工智能分子动力学第一性原理深度学习vasp复合材料
在新能源与先进制造技术飞速发展的今天,材料科学的创新成为推动行业进步的关键力量。本次前沿技术会议聚焦“机器学习赋能的多尺度材料模拟与催化设计”,旨在为科研人员与工程师搭建一个深度交流与学习的平台。会议将深度融合分子动力学模拟(MD)、第一性原理计算(DFT)等微观模拟方法,以及机器学习(ML)与强化学习(DQN)等前沿算法,通过锂硫电池、压电催化、催化转化等实战案例,展示如何利用“数据驱动+物理建
- 深度强化学习应用:基于Double DQN算法的移动机器人路径跟踪技术解析
威哥说编程
算法
前言随着智能控制与机器人技术的不断发展,深度强化学习(DRL)作为一种具有强大自学习能力的技术,已经在机器人领域获得了广泛应用。尤其是在路径跟踪问题中,传统的控制算法往往依赖于模型和假设,而深度强化学习则能够通过大量的训练数据让机器人自主学习如何优化其行为策略,从而实现高效的路径跟踪。本文将深入探讨基于**DoubleDQN(DoubleDeepQ-Network)**算法的移动机器人路径跟踪问题
- 用深度强化学习玩atari游戏_Pytorch深度强化学习 1.用DQN解决Atari game
我一直对强化学习感兴趣,这学期正好选了一门强化学习的课,第一次作业是让复现DQN。这几年也看了不少DQN的代码,但要自己实现起来,还是犯晕,效率很低。这篇文章从深度强化学习所需的元素出发,达到用DQN解决atarigames的目的。1.Observe,Value,Act强化学习研究的是Agent和环境交互中如何学习最优策略,以获得最大收益。Agent需要能够观察环境(observe)的到所处的状态
- 基于深度强化学习(Deep Q-Network, DQN)的运输路径优化系统
欣然~
python
这是一个基于深度强化学习(DeepQ-Network,DQN)的运输路径优化系统。代码主要包含以下几个部分:1.导入库importnumpyasnpimportgymfromgymimportspacesimportmatplotlib.pyplotaspltfrommatplotlib.colorsimportLinearSegmentedColormapimportrandomimportto
- 《Python星球日记》 第84天:Q-Learning 与 DQN
Code_流苏
Python星球日记pythonQ-learningDQN算法经验回放目标网络代码实践进阶应用
名人说:路漫漫其修远兮,吾将上下而求索。——屈原《离骚》创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder)目录一、强化学习基础回顾1.核心元素与术语二、Q-Learning算法详解1.Q表更新公式2.探索与利用(ExplorationvsExploitation)3.Q-Learning示例三、DQN(DeepQ-Network)算法1.使用神经网络近似Q函数2.经验回放与目标
- 强化学习实战:训练AI玩转OpenAI Gym
layneyao
ai人工智能
强化学习实战:训练AI玩转OpenAIGym系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录强化学习实战:训练AI玩转OpenAIGym摘要引言强化学习基础与算法分类1.核心概念与数学表示2.算法分类与典型应用场景实战一:CartPole任务——从Q-Learning到DQN1.环境简介2.代码实现:DQN算法3.实验结果与优化方向实战二:Moun
- [转载]DQN的例子--迷宫问题
Ritter_Liu
DQN
Fromhttps://segmentfault.com/a/1190000018120424代码可以参见https://blog.csdn.net/bbbeoy/...,本文我做了一些改动目前,强化学习中很火的当属Q-Learning了,关于Q-Learning的具体介绍请参加我上一篇文章。从上一篇文章中,我们可以看到,Qtable可以看做Q-Learning的大脑,Qtable对应了一张sta
- 深入理解深度确定性策略梯度DDPG:基于python从零实现
AI仙人掌
复现强化学习RL算法python开发语言人工智能机器学习神经网络强化学习RL
向所有学习者致敬!“学习不是装满一桶水,而是点燃一把火。”——叶芝我的博客主页:https://lizheng.blog.csdn.net欢迎点击加入AI人工智能社区!让我们一起努力,共创AI未来!前言深度确定性策略梯度(DDPG)是一种离线策略的演员-评论家算法,专门为具有连续动作空间的环境设计。它结合了深度Q网络(DQN)中的思想,例如回放缓存和目标网络,并将其应用于演员-评论家框架,适应确定
- 深度理解用于多智能体强化学习的单调价值函数分解QMIX算法:基于python从零实现
AI仙人掌
复现强化学习RL算法算法pythonRL强化学习价值函数
引言:合作式多智能体强化学习与功劳分配在合作式多智能体强化学习(MARL)中,多个智能体携手合作,共同达成一个目标,通常会收到一个团队共享的奖励。在这种场景下,一个关键的挑战就是功劳分配:一个单独的智能体如何仅凭全局奖励信号来判断自己对团队成功或失败的贡献呢?简单的独立学习方法(比如每个智能体都运行DQN)往往行不通,因为它把其他智能体当作了非静态环境的一部分,而且在功劳分配上也搞不定。价值分解方
- 基于深度强化学习的网约车动态路径规划
罗伯特之技术屋
行业数字化研究及信息化建设专栏智能科学与技术专栏java开发语言
摘要随着移动互联网的快速发展,许多利用手机App打车的网约车平台也应运而生.这些网约车平台大大减少了网约车的空驶时间和乘客等待时间,从而提高了交通效率.作为平台核心模块,网约车路径规划问题致力于调度空闲的网约车以服务潜在的乘客,从而提升平台的运营效率,近年来受到广泛关注.现有研究主要采用基于值函数的深度强化学习算法(如deepQ-network,DQN)来解决这一问题.然而,由于基于值函数的方法存
- 强化学习算法:深度 Q 网络 (DQN) 原理与代码实例讲解
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
强化学习算法:深度Q网络(DQN)原理与代码实例讲解关键词:强化学习,深度Q网络(DQN),深度神经网络,动作策略,奖励函数,探索-利用平衡,经验回放(ExperienceReplay),多智能体1.背景介绍1.1问题由来强化学习(ReinforcementLearning,RL)是一种模拟智能体(Agent)在环境(Environment)中通过与环境交互,学习最优决策的机器学习方法。强化学习的
- 深度 Qlearning:深度Qlearning VS DQN
SuperAGI2025
AI大模型应用开发宝典javapythonjavascriptkotlingolang架构人工智能
深度Q-learning:深度Q-learningVSDQN1.背景介绍1.1问题由来深度强化学习(DeepReinforcementLearning,DRL)是近年来人工智能领域的重要研究方向,旨在通过深度神经网络来学习和优化强化学习(ReinforcementLearning,RL)问题。其中,深度Q-learning和DQN(DeepQ-Networks)是两种最为经典的深度强化学习算法,它
- A3C框架
LeeKooktao
强化学习算法人工智能
文章目录一、动机二、A3C算法一、动机基于AC框架的算法很难收敛,因此可以采用DQN的经验回放的方法降低数据间的相关性,基于这种思想A3C算法采用异步的思想降低数据间的差异性,具体做法:在多个线程里与环境进行交互,将每个线程内的交互的经验收集起来,共同保存,指导所有智能体与环境进行交互二、A3C算法异步训练框架如下图所示:包括全局的网络架构和n个worker线程,n个worker线程中的网络与全局
- 深度强化学习(DRL)实战:从AlphaGo到自动驾驶
layneyao
ai自动驾驶人工智能机器学习
——从算法原理到产业落地的全链路解析摘要本文通过算法对比矩阵、训练流程图解、Python代码实战及产业应用解析,构建从理论创新到工程落地的完整技术栈。实验数据显示:采用PPO算法训练的7自由度机械臂抓取成功率达92%,基于改进型DQN的自动驾驶决策模型在CARLA仿真环境中事故率降低67%。开发者可通过本文掌握:主流DRL算法特性对比与选型决策树安全约束强化学习(SafeRL)的工程实现从仿真到部
- DQN算法:演进、原理推导及代码实现
艰默
强化学习算法php开发语言
文章目录引言一、DQN的演进1.1传统Q学习的局限1.2DQN的提出和改进1.3核心原理:用神经网络近似Q函数二、DQN的原理推导2.1马尔可夫决策过程2.2Q值函数与Q学习2.3DQN的函数逼近2.4经验回放与目标网络的结合2.4.1经验回放2.4.2目标网络三、DQN的代码实现引言在强化学习领域,传统Q-learning算法通过表格存储状态-动作值(Q值),但这种方法在处理高维或连续状态空间时
- 深度强化学习(DRL)框架与多目标调度优化详解
大霸王龙
python深度学习多目标优化深度强化学习
深度强化学习(DRL)框架与多目标调度优化详解(截至2025年4月,结合最新研究进展)一、DRL主流框架及核心算法通用DRL框架RayRLlib:支持分布式训练,集成PPO、A3C、DQN等算法,适用于大规模多目标调度场景(如云资源分配)。StableBaselines3:基于PyTorch,提供模块化接口,支持自定义奖励函数和状态空间,适合动态多目标优化问题(如柔性车间调度)。TensorFor
- 强化学习(Q-learning、DQN) —— 理论、案例与交互式 GUI 实现
闲人编程
pythonRL策略演化Q值函数Q-learningDQN强化学习奖励函数
目录强化学习(Q-learning、DQN)——理论、案例与交互式GUI实现一、引言二、强化学习基本原理2.1强化学习框架2.2Q值函数三、Q-learning算法3.1算法原理3.2算法流程四、深度Q网络(DQN)4.1DQN算法背景4.2DQN的核心技术4.3DQN算法流程五、典型案例分析5.1案例一:迷宫导航5.1.1案例描述5.1.2分析结论5.2案例二:股票交易策略5.2.1案例描述5.
- 强化学习: 继续看 Q-Learning + FrozenLake, 解决更大的地图 8x8, 10x10
waterHBO
python强化学习python笔记经验分享
引子古之成大事者,规模远大与综理密微,二者缺一不可。不管天气好坏,坚持每天前进大概30公里。起初店里的生意比较惨淡,他们有大把的时间来编写程序。起因,目的:8x8的地图很容易失败,这个问题,我之前讲过。如何解决,一句话,根据距离来修改奖励.过程:1.先让ChatGPT推荐几种方法聊天记录ChatGPT推荐了5种方法,我试了,都不行。失败率还是很高。再推荐几种方法,还是不行。比如DQN,我试了,失败
- 【迷宫路径规划】强化学习DQN网格迷宫路径规划【含Matlab源码 8028期】
Matlab领域
Matlab路径规划(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(高阶版)②付费专栏Matlab路径规划(进阶版)③付费专栏Matlab路径规划(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- DQN与深度学习模型的融合:CNN_RNN与DQN
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍近年来,深度强化学习(DRL)技术取得了显著的进展,并在游戏、机器人控制、自然语言处理等领域取得了突破性成果。其中,深度Q网络(DQN)作为DRL的代表性算法之一,因其强大的学习能力和泛化能力而备受关注。然而,传统的DQN算法通常采用全连接神经网络作为函数逼近器,难以有效地处理高维数据和复杂环境。为了克服这一局限,研究人员开始探索将DQN与其他深度学习模型(如卷积神经网络(CNN)和循
- 从奖励到最优决策:动作价值函数与价值学习
KangkangLoveNLP
强化学习机器学习概率论人工智能深度学习python神经网络自然语言处理
从奖励到最优决策:动作价值函数与价值学习价值学习动作价值函数对UtU_tUt求期望得到动作价值函数动作价值函数的意义最优动作价值函数(OptimalAction-ValueFunction)如何理解Q∗Q^*Q∗函数价值学习的基本思想DeepQ-Network(DQN)DQN玩游戏的具体流程如何训练DQN——TD算法(TemporalDifferenceAlgorithm,时差算法)将TD算法应用
- 《Python实战进阶》No37: 强化学习入门:Q-Learning 与 DQN-加餐版1 Q-Learning算法可视化
带娃的IT创业者
Python实战进阶python算法pygame
在《Python实战进阶》No37:强化学习入门:Q-Learning与DQN这篇文章中,我们介绍了Q-Learning算法走出迷宫的代码实践,本文加餐,把Q-Learning算法通过代码可视化呈现。我尝试了使用Matplotlib实现,但局限于Matplotlib对动画不支持,做出来的仿动画太僵硬,所以使用pygame重新设计Q-Learning的可视化程序可以显著提升动画的流畅性和交互性。相比
- 一切皆是映射:DQN训练加速技术:分布式训练与GPU并行
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度强化学习的兴起近年来,深度强化学习(DeepReinforcementLearning,DRL)在游戏、机器人控制、自然语言处理等领域取得了令人瞩目的成就。作为一种结合深度学习和强化学习的强大技术,DRL能够使智能体在与环境交互的过程中学习最优策略,从而实现自主决策和控制。1.2DQN算法及其局限性深度Q网络(DeepQ-Network,DQN)是DRL的一种经典算法,它利用
- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本