CacheInterceptor
依赖两个关键类,一个是CacheStrategy
,一个是InternalCache
。
CacheStrategy
采用的是简单工厂模式(其实只是抽象工厂的特例),此类用于判定使用缓存,网络还是二者都使用。
InternalCache
基本不会自己去设置,会使用Cache
中的InternalCache
的结构,而Cache
实际上是通过DiskLruCache
实现。
Cache
的类图:
接下来先分析Cache
的源码,CacheStrategy
源码,最后是CacheInterceptor
源码。
public final class Cache implements Closeable, Flushable {
final InternalCache internalCache = new InternalCache() {
@Override public Response get(Request request) throws IOException {
return Cache.this.get(request);
}
@Override public CacheRequest put(Response response) throws IOException {
return Cache.this.put(response);
}
@Override public void remove(Request request) throws IOException {
Cache.this.remove(request);
}
@Override public void update(Response cached, Response network) {
Cache.this.update(cached, network);
}
@Override public void trackConditionalCacheHit() {
Cache.this.trackConditionalCacheHit();
}
@Override public void trackResponse(CacheStrategy cacheStrategy) {
Cache.this.trackResponse(cacheStrategy);
}
};
}
InternalCache
的实现是匿名内部类,并且是通过调用Cache
的相关方法来实现的。
public final class Cache implements Closeable, Flushable {
final DiskLruCache cache;
public Cache(File directory, long maxSize) {
this(directory, maxSize, FileSystem.SYSTEM);
}
Cache(File directory, long maxSize, FileSystem fileSystem) {
this.cache = DiskLruCache.create(fileSystem, directory, VERSION, ENTRY_COUNT, maxSize);
}
}
通过构造方法来创建DiskLruCache
。
我们接着分析put
与get
方法。
public final class Cache implements Closeable, Flushable {
@Nullable CacheRequest put(Response response) {
String requestMethod = response.request().method();
if (HttpMethod.invalidatesCache(response.request().method())) {
try {
remove(response.request());
} catch (IOException ignored) {
// The cache cannot be written.
}
return null;
}
......
}
}
根据请求method
,判断是否是无效的缓存。POST
,PUT
等方法是无法缓存的。
public final class Cache implements Closeable, Flushable {
@Nullable CacheRequest put(Response response) {
if (!requestMethod.equals("GET")) {
return null;
}
}
}
非GET
请求,不支持缓存。因此直接返回null
。
public final class Cache implements Closeable, Flushable {
@Nullable CacheRequest put(Response response) {
......
if (HttpHeaders.hasVaryAll(response)) {
return null;
}
......
}
}
确实是不是包换所有的Vary
,也就是Vary
头是不是*
。如果是,直接返回null
。
public final class Cache implements Closeable, Flushable {
@Nullable CacheRequest put(Response response) {
......
Entry entry = new Entry(response);
DiskLruCache.Editor editor = null;
try {
editor = cache.edit(key(response.request().url()));
if (editor == null) {
return null;
}
entry.writeTo(editor);
return new CacheRequestImpl(editor);
} catch (IOException e) {
abortQuietly(editor);
return null;
}
}
}
首先是创建一个Entry
对象(保存了响应的数据)。接着根据url
(url
的MD5
)从DiskLruCache
对象cache
中获取DiskLruCache.Editor
。接着调用Entry
对象entry
的writeTo
写入数据。最后创建一个CacheRequestImpl
返回。
其他的问题:
具体写入都是依赖
OKio
的,可以自行分析一下。
public final class Cache implements Closeable, Flushable {
@Nullable Response get(Request request) {
String key = key(request.url());
DiskLruCache.Snapshot snapshot;
Entry entry;
try {
snapshot = cache.get(key);
if (snapshot == null) {
return null;
}
} catch (IOException e) {
return null;
}
......
}
根据url
获取key
,根据key
从DiskLruCache
对象cache
中获取DiskLruCache.Snapshot
。如果snapshot
为null
说明没有缓存,直接返回null
,如果发生了IOException
异常,说明是缓存无法读取,直接返回null
。
public final class Cache implements Closeable, Flushable {
@Nullable Response get(Request request) {
......
try {
entry = new Entry(snapshot.getSource(ENTRY_METADATA));
} catch (IOException e) {
Util.closeQuietly(snapshot);
return null;
}
......
}
}
这段代码主要是创建Entry
对象。会从Source
中读取url
,method
等信息。
public final class Cache implements Closeable, Flushable {
@Nullable Response get(Request request) {
......
Response response = entry.response(snapshot);
if (!entry.matches(request, response)) {
Util.closeQuietly(response.body());
return null;
}
return response;
}
}
调用entry
的response
获取响应。然后判断请求与响应是否匹配,不匹配关闭流,返回null
。匹配返回Response
。
CacheStrategy
采用的是简单工厂(抽象工厂的特例)。我们先分析CacheStrategy
的静态类Factory
。
public static class Factory {
public Factory(long nowMillis, Request request, Response cacheResponse) {
this.nowMillis = nowMillis;
this.request = request;
this.cacheResponse = cacheResponse;
if (cacheResponse != null) {
this.sentRequestMillis = cacheResponse.sentRequestAtMillis();
this.receivedResponseMillis = cacheResponse.receivedResponseAtMillis();
Headers headers = cacheResponse.headers();
for (int i = 0, size = headers.size(); i < size; i++) {
String fieldName = headers.name(i);
String value = headers.value(i);
if ("Date".equalsIgnoreCase(fieldName)) {
servedDate = HttpDate.parse(value);
servedDateString = value;
} else if ("Expires".equalsIgnoreCase(fieldName)) {
expires = HttpDate.parse(value);
} else if ("Last-Modified".equalsIgnoreCase(fieldName)) {
lastModified = HttpDate.parse(value);
lastModifiedString = value;
} else if ("ETag".equalsIgnoreCase(fieldName)) {
etag = value;
} else if ("Age".equalsIgnoreCase(fieldName)) {
ageSeconds = HttpHeaders.parseSeconds(value, -1);
}
}
}
}
......
}
构造方法中,主要是解析缓存相关的字段。
Date
报文创建的日期和时间,用于计算新鲜度。
Expires
响应失效的日期和时间。
Last-Modified
提供实体最后一次修改的时间。
ETag
表示实体的标记。
Age
告诉接收端响应已经产生了多长时间。
public static class Factory {
public CacheStrategy get() {
CacheStrategy candidate = getCandidate();
if (candidate.networkRequest != null && request.cacheControl().onlyIfCached()) {
// We're forbidden from using the network and the cache is insufficient.
return new CacheStrategy(null, null);
}
return candidate;
}
}
这里的代码比较简答的,通过getCandidate
方法获取CacheStrategy
对象。
如果是onlyIfCached
,由于验证请求不支持onlyIfCached
(only-if-cached
),因此直接返回参数都为null
的CacheStrategy
。如果不是直接返回CacheStrategy
对象candidate
。
我们一起来分析一下getCandidate
方法。由于getCandidate
方法代码比较多,我们分段介绍。
public static class Factory {
private CacheStrategy getCandidate() {
//没有缓存的响应,直接返回
if (cacheResponse == null) {
return new CacheStrategy(request, null);
}
//如果是Https但是丢失了TSL的握手就直接返回
if (request.isHttps() && cacheResponse.handshake() == null) {
return new CacheStrategy(request, null);
}
//根据响应的code,判断是否支持缓存,不支持直接返回。
if (!isCacheable(cacheResponse, request)) {
return new CacheStrategy(request, null);
}
//从请求中获取CacheControl对象,如果CacheControl为noCache,不使用缓存。
//或者是请求满足一些条件(添加了验证请求If-Modified-Since或者If-None-Match)就直接返回。
CacheControl requestCaching = request.cacheControl();
if (requestCaching.noCache() || hasConditions(request)) {
return new CacheStrategy(request, null);
}
......
}
}
上面的代码主要是通过一些条件判断,当创建CacheStrategy
对象时,只是传入请求Request
时,说明是进行网络请求,只传入缓存的Response
时,说明使用缓存。当二者都传入时,进行验证请求。
接着分析:
public static class Factory {
private CacheStrategy getCandidate() {
......
CacheControl responseCaching = cacheResponse.cacheControl();
//计算age,计算的方法见 https://tools.ietf.org/html/rfc7234#section-4.2.3
long ageMillis = cacheResponseAge();
//计算新鲜度 https://tools.ietf.org/html/rfc7234#section-4.2.1
long freshMillis = computeFreshnessLifetime();
if (requestCaching.maxAgeSeconds() != -1) {
freshMillis = Math.min(freshMillis, SECONDS.toMillis(requestCaching.maxAgeSeconds()));
}
//获取请求的min-fresh。
long minFreshMillis = 0;
if (requestCaching.minFreshSeconds() != -1) {
minFreshMillis = SECONDS.toMillis(requestCaching.minFreshSeconds());
}
//获取max-stale,表示过期后能够使用的时间。
long maxStaleMillis = 0;
if (!responseCaching.mustRevalidate() && requestCaching.maxStaleSeconds() != -1) {
maxStaleMillis = SECONDS.toMillis(requestCaching.maxStaleSeconds());
}
//说明没有真正的过期。
if (!responseCaching.noCache() && ageMillis + minFreshMillis < freshMillis + maxStaleMillis) {
Response.Builder builder = cacheResponse.newBuilder();
//发送110警告。
if (ageMillis + minFreshMillis >= freshMillis) {
builder.addHeader("Warning", "110 HttpURLConnection \"Response is stale\"");
}
//启发式过期,需要发送113警告。
long oneDayMillis = 24 * 60 * 60 * 1000L;
if (ageMillis > oneDayMillis && isFreshnessLifetimeHeuristic()) {
builder.addHeader("Warning", "113 HttpURLConnection \"Heuristic expiration\"");
}
return new CacheStrategy(null, builder.build());
}
......
}
}
缓存计算的基本的逻辑如下:
public static class Factory {
private CacheStrategy getCandidate() {
......
//设置验证请求的数据。
String conditionName;
String conditionValue;
if (etag != null) {
conditionName = "If-None-Match";
conditionValue = etag;
} else if (lastModified != null) {
conditionName = "If-Modified-Since";
conditionValue = lastModifiedString;
} else if (servedDate != null) {
conditionName = "If-Modified-Since";
conditionValue = servedDateString;
} else {
return new CacheStrategy(request, null); // No condition! Make a regular request.
}
//设置验证请求头。
Headers.Builder conditionalRequestHeaders = request.headers().newBuilder();
Internal.instance.addLenient(conditionalRequestHeaders, conditionName, conditionValue);
Request conditionalRequest = request.newBuilder()
.headers(conditionalRequestHeaders.build())
.build();
return new CacheStrategy(conditionalRequest, cacheResponse);
}
}
上面代码主要是获取验证请求的数据,并设置到请求中,最终返回策略。
public final class CacheInterceptor implements Interceptor {
final InternalCache cache;
@Override public Response intercept(Chain chain) throws IOException {
Response cacheCandidate = cache != null
? cache.get(chain.request())
: null;
......
}
}
显示获取缓存的Response
。如果InternalCache
对象cache
为null
,说明是没有设置缓存,也就是说不支持缓存。不为null
是,从cache
中获取缓存。一般我们使用的是Cache
中的匿名内部类变量internalCache
。实际操作的还是Cache
。
public final class CacheInterceptor implements Interceptor {
@Override public Response intercept(Chain chain) throws IOException {
......
long now = System.currentTimeMillis();
CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
Request networkRequest = strategy.networkRequest;
Response cacheResponse = strategy.cacheResponse;
······
}
}
获取缓存策略CacheStrategy
对象,我们前面说过,请求Request
与响应Response
是否存在决定要不要进行网络请求,还是使用缓存。分四种情况:
Reques
t与Response
都存在,说明新鲜度已经过期,需要进行验证请求。public final class CacheInterceptor implements Interceptor {
@Override public Response intercept(Chain chain) throws IOException {
······
if (cacheCandidate != null && cacheResponse == null) {
closeQuietly(cacheCandidate.body());
}
······
}
}
CacheStrategy
对象中缓存响应cacheResponse
为null
说明不使用缓存,而cacheCandidate
又存在,需要关闭缓存cacheCandidate
里面的流。
public final class CacheInterceptor implements Interceptor {
@Override public Response intercept(Chain chain) throws IOException {
......
if (networkRequest == null && cacheResponse == null) {
return new Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(504)
.message("Unsatisfiable Request (only-if-cached)")
.body(Util.EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
}
......
}
}
如果既不用缓存也不使用网络,直接构建响应并返回。
public final class CacheInterceptor implements Interceptor {
@Override public Response intercept(Chain chain) throws IOException {
......
if (networkRequest == null) {
return cacheResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build();
}
......
}
}
根据前面的判断,这里可以确定是缓存命中。networkRequest
为null
说明不进行网络请求,根据缓存构建响应并返回。
public final class CacheInterceptor implements Interceptor {
@Override public Response intercept(Chain chain) throws IOException {
......
Response networkResponse = null;
try {
networkResponse = chain.proceed(networkRequest);
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
closeQuietly(cacheCandidate.body());
}
}
......
}
}
通过Chain责任链获取响应,finally中当获取的响应是null时,并且存在缓存时,关闭缓存中的流。
public final class CacheInterceptor implements Interceptor {
@Override public Response intercept(Chain chain) throws IOException {
......
if (cacheResponse != null) {
if (networkResponse.code() == HTTP_NOT_MODIFIED) {
Response response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers(), networkResponse.headers()))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis())
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
networkResponse.body().close();
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache.trackConditionalCacheHit();
cache.update(cacheResponse, response);
return response;
} else {
closeQuietly(cacheResponse.body());
}
}
......
}
}
cacheResponse != null
,说明存在缓存,然后是判断网络的响应的networkResponse
的code
是否为HTTP_NOT_MODIFIED(304)
,如果是说明缓存还可以使用,构建Response
,并更新缓存,返回。不为HTTP_NOT_MODIFIED
,说明内容已经修改,不能使用缓存了,关闭缓存中的流。
public final class CacheInterceptor implements Interceptor {
@Override public Response intercept(Chain chain) throws IOException {
......
Response response = networkResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
if (cache != null) {
if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
CacheRequest cacheRequest = cache.put(response);
return cacheWritingResponse(cacheRequest, response);
}
if (HttpMethod.invalidatesCache(networkRequest.method())) {
try {
cache.remove(networkRequest);
} catch (IOException ignored) {
// The cache cannot be written.
}
}
}
return response;
}
}
构建响应Response
,然后根据需要put
缓存。
OkHttp的源码并不难,如果看不懂,大部分原因是Http的缓存的机制不了。
可以查看: