Example 1:
Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Note:
思路:
虽然是由2 变成k,但是画风突变,不能用dynamic programming 做了,变成了一道backtracking的好题。首先我们检查sum能不能被k整除,不能直接返回false。在helper中,记录一个bool vector: visited,记录每一个数字是否被使用过。k此时代表还有多少组subset要搜索,start代表本次搜索开始的位置,curSum表示当前累加和。终止条件由很多种,首先,如果k = 0, 表示已经找到了k组cursum == target, 返回true(其实k = 1 已经可以返回true了,但速度没什么变化)。如果cursum == sum, 说明又找到一组subset,继续递归找k - 1组。
Time complexity: O(n^k) ??
Space complexity: O(n)
class Solution {
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
int n = nums.size();
vector<bool> visited(n, false);
int target = accumulate(nums.begin(), nums.end(), 0);
if (target % k) return false;
target /= k;
return partitionHelper(nums, visited, k, target, 0, 0);
}
bool partitionHelper(vector<int> & nums, vector<bool> & visited, int k, int target, int curSum, int start) {
if (k == 0) return true;
if (curSum == target) return partitionHelper(nums, visited, k - 1, target, 0, 0);
for (int i = start; i < nums.size(); i++) {
if (!visited[i]) {
visited[i] = true;
if (partitionHelper(nums, visited, k, target, curSum + nums[i], i + 1))
return true;;
visited[i] = false;
}
}
return false;
}
};
剪枝:先给数组按从大到小的顺序排个序,然后在递归函数中,可以直接判断,如果curSum大于target了,直接返回false。因为题目中限定了都是正数,并且我们也给数组排序了,后面的数字只能更大,可以提速很多。
class Solution {
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
int n = nums.size();
vector<bool> visited(n, false);
int target = accumulate(nums.begin(), nums.end(), 0);
if (target % k) return false;
target /= k;
sort(nums.begin(), nums.end(), greater<int>());
return partitionHelper(nums, visited, k, target, 0, 0);
}
bool partitionHelper(vector<int> & nums, vector<bool> & visited, int k, int target, int curSum, int start) {
if (k == 1) return true;
if (curSum > target) return false;
if (curSum == target) return partitionHelper(nums, visited, k - 1, target, 0, 0);
for (int i = start; i < nums.size(); i++) {
if (!visited[i]) {
visited[i] = true;
if (partitionHelper(nums, visited, k, target, curSum + nums[i], i + 1))
return true;;
visited[i] = false;
}
}
return false;
}
};