XXL-JOB是一个轻量级分布式任务调度框架,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
项目git地址 | 项目首页
为了方便使用改造,自己在github上fork了一个项目进行完善(地址),添加功能(发短信,展示更多字段、解决部分BUG,添加cron表达式解释器)
搭建项目、了解架构可以在项目官网学习。本文只做加强补充,个人内容通过标注的形式展现。
- /doc :文档资料
- /db :“调度数据库”建表脚本
- /xxl-job-admin :调度中心,项目源码
- /xxl-job-core :公共Jar依赖
- /xxl-job-executor-samples :执行器,Sample示例项目(大家可以在该项目上进行开发,也可以将现有项目改造生成执行器项目)
XXL-JOB调度模块基于Quartz集群实现,其“调度数据库”是在Quartz的11张集群mysql表基础上扩展而成。
XXL-JOB首先定制了Quartz原生表结构前缀(XXL_JOB_QRTZ_)。
然后,在此基础上新增了几张张扩展表,如下:
- XXL_JOB_QRTZ_TRIGGER_GROUP:执行器信息表,维护任务执行器信息;
- XXL_JOB_QRTZ_TRIGGER_REGISTRY:执行器注册表,维护在线的执行器和调度中心机器地址信息;
- XXL_JOB_QRTZ_TRIGGER_INFO:调度扩展信息表: 用于保存XXL-JOB调度任务的扩展信息,如任务分组、任务名、机器地址、执行器、执行入参和报警邮件等等;
- XXL_JOB_QRTZ_TRIGGER_LOG:调度日志表: 用于保存XXL-JOB任务调度的历史信息,如调度结果、执行结果、调度入参、调度机器和执行器等等;
- XXL_JOB_QRTZ_TRIGGER_LOGGLUE:任务GLUE日志:用于保存GLUE更新历史,用于支持GLUE的版本回溯功能;
因此,XXL-JOB调度数据库共计用于16张数据库表。
主要基于
Quartz
的数据库表,如果需要支持其他数据库,可以到Quartz官网 下载,里面的文档部分有支持多种类型数据库(mysql、sqlserver、H2、sybase…)的初始化sql。
将调度行为抽象形成“调度中心”公共平台,而平台自身并不承担业务逻辑,“调度中心”负责发起调度请求。
将任务抽象成分散的JobHandler,交由“执行器”统一管理,“执行器”负责接收调度请求并执行对应的JobHandler中业务逻辑。
因此,“调度”和“任务”两部分可以相互解耦,提高系统整体稳定性和扩展性;
Quartz作为开源作业调度中的佼佼者,是作业调度的首选。但是集群环境中Quartz采用API的方式对任务进行管理,从而可以避免上述问题,但是同样存在以下问题:
XXL-JOB弥补了quartz的上述不足之处。
常规Quartz的开发,任务逻辑一般维护在QuartzJobBean中,耦合很严重。XXL-JOB中“调度模块”和“任务模块”完全解耦,调度模块中的所有调度任务使用同一个QuartzJobBean,即RemoteHttpJobBean。不同的调度任务将各自参数维护在各自扩展表数据中,当触发RemoteHttpJobBean执行时,将会解析不同的任务参数发起远程调用,调用各自的远程执行器服务。
这种调用模型类似RPC调用,RemoteHttpJobBean提供调用代理的功能,而执行器提供远程服务的功能。
调度器和执行器基于http通信,通过动态代理的方式实现远程调用。
具体代码可见NetComClientProxy
,通过重写FactoryBean
的getObject()
发起远程调用,使用时类似如下代码:
ExecutorBiz executorBiz = (ExecutorBiz) new NetComClientProxy(ExecutorBiz.class, "127.0.0.1:9999", null).getObject();
executorBiz.run(triggerParam);
基于Quartz的集群方案,数据库选用Mysql;集群分布式并发环境中使用QUARTZ定时任务调度,会在各个节点会上报任务,存到数据库中,执行时会从数据库中取出触发器来执行,如果触发器的名称和执行时间相同,则只有一个节点去执行此任务。
# for cluster
org.quartz.jobStore.tablePrefix = XXL_JOB_QRTZ_
org.quartz.scheduler.instanceId: AUTO
org.quartz.jobStore.class: org.quartz.impl.jdbcjobstore.JobStoreTX
org.quartz.jobStore.isClustered: true
org.quartz.jobStore.clusterCheckinInterval: 1000
调度采用线程池方式实现,避免单线程因阻塞而引起任务调度延迟。
org.quartz.threadPool.class: org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount: 15
org.quartz.threadPool.threadPriority: 5
org.quartz.threadPool.threadsInheritContextClassLoaderOfInitializingThread: true
XXL-JOB系统中业务逻辑在远程执行器执行,全异步化设计,调度中心每次触发调度时仅发送一次调度请求,执行器会将请求存入执行队列并且立即响应调度中心,异步运行;相比直接在quartz的QuartzJobBean中执行业务逻辑,极大的降低了调度线程占用时间;
XXL-JOB调度中心中每个JOB逻辑非常 “轻”,单个JOB一次运行平均耗时基本在 “10ms” 之内(基本为一次请求的网络开销);因此,可以保证使用有限的线程支撑大量的JOB并发运行;
理论支撑任务量公式如下:
理论支撑任务量 = 线程数配置 / 平均调度频率(每秒) * 平均触发耗时(单位s)
理论上采用推荐机器配置 “4核4G内存” + “配置1s运行1次密集任务” + “调度中心与执行器ping延迟10ms(0.01s)” 的情况下,
- 单线程支撑任务量 :1 / 1 * 0.01 = 100个任务
- 15个线程支撑任务量:15 / 1 * 0.01 = 1500个任务
实际场景中,由于调度中心与执行器ping延迟不同、DB读写耗时不同、任务调度密集程度不同,会导致任务量上限会上下波动。
如若需要支撑更多的任务量,可以通过 “调大调度线程数” 、”降低调度中心与执行器ping延迟” 和 “提升机器配置” 几种方式实现。
XXL-JOB调度模块的“调度中心”默认不使用该注解,即默认开启并行机制,因为RemoteHttpJobBean为公共QuartzJobBean,这样在多线程调度的情况下,调度模块被阻塞的几率很低,大大提高了调度系统的承载量。
XXL-JOB的每个调度任务虽然在调度模块是并行调度执行的,但是任务调度传递到任务模块的“执行器”确实串行执行的,同时支持任务终止。
错过了触发时间,处理规则。
可能原因:服务重启;调度线程被QuartzJobBean阻塞,线程被耗尽;某个任务启用了@DisallowConcurrentExecution,上次调度持续阻塞,下次调度被错过;
quartz.properties中关于misfire的阀值配置如下,单位毫秒:
org.quartz.jobStore.misfireThreshold: 60000
Misfire规则:
withMisfireHandlingInstructionDoNothing:不触发立即执行,等待下次调度;
withMisfireHandlingInstructionIgnoreMisfires:以错过的第一个频率时间立刻开始执行;
withMisfireHandlingInstructionFireAndProceed:以当前时间为触发频率立刻触发一次执行;
XXL-JOB默认misfire规则为:withMisfireHandlingInstructionDoNothing
CronScheduleBuilder cronScheduleBuilder = CronScheduleBuilder.cronSchedule(jobInfo.getJobCron()).withMisfireHandlingInstructionDoNothing();
CronTrigger cronTrigger = TriggerBuilder.newTrigger().withIdentity(triggerKey).withSchedule(cronScheduleBuilder).build();
调度模块的“调度中心”作为Web服务部署时,一方面承担调度中心功能,另一方面也为执行器提供API服务。
调度中心提供的”日志回调服务API服务”代码位置如下:
xxl-job-admin#com.xxl.job.admin.controller.JobApiController.callback
“执行器”在接收到任务执行请求后,执行任务,在执行结束之后会将执行结果回调通知“调度中心”:
亦是通过
4.2
所述的方式进行通信
执行器如若集群部署,调度中心将会感知到在线的所有执行器,如“127.0.0.1:9997, 127.0.0.1:9998, 127.0.0.1:9999”。
当任务”路由策略”选择”故障转移(FAILOVER)”时,当调度中心每次发起调度请求时,会按照顺序对执行器发出心跳检测请求,第一个检测为存活状态的执行器将会被选定并发送调度请求。
调度成功后,可在日志监控界面查看“调度备注”,如下;
“调度备注”可以看出本地调度运行轨迹,执行器的”注册方式”、”地址列表”和任务的”路由策略”。”故障转移(FAILOVER)”路由策略下,调度中心首先对第一个地址进行心跳检测,心跳失败因此自动跳过,第二个依然心跳检测失败……
直至心跳检测第三个地址“127.0.0.1:9999”成功,选定为“目标执行器”;然后对“目标执行器”发送调度请求,调度流程结束,等待执行器回调执行结果。
调度中心每次进行任务调度,都会记录一条任务日志,任务日志主要包括以下三部分内容:
调度日志,针对单次调度,属性说明如下:
- 执行器地址:任务执行的机器地址;
- JobHandler:Bean模式表示任务执行的JobHandler名称;
- 任务参数:任务执行的入参;
- 调度时间:调度中心,发起调度的时间;
- 调度结果:调度中心,发起调度的结果,SUCCESS或FAIL;
- 调度备注:调度中心,发起调度的备注信息,如地址心跳检测日志等;
- 执行时间:执行器,任务执行结束后回调的时间;
- 执行结果:执行器,任务执行的结果,SUCCESS或FAIL;
- 执行备注:执行器,任务执行的备注信息,如异常日志等;
- 执行日志:任务执行过程中,业务代码中打印的完整执行日志,见“4.7 查看执行日志”;
原理:XXL-JOB中每个任务都对应有一个任务ID,同时,每个任务支持设置属性“子任务ID”,因此,通过“任务ID”可以匹配任务依赖关系。
当父任务执行结束并且执行成功时,将会根据“子任务ID”匹配子任务依赖,如果匹配到子任务,将会主动触发一次子任务的执行。
在任务日志界面,点击任务的“执行备注”的“查看”按钮,可以看到匹配子任务以及触发子任务执行的日志信息,如无信息则表示未触发子任务执行,可参考下图。
开发步骤:可参考 “章节三” ;
原理:每个Bean模式任务都是一个Spring的Bean类实例,它被维护在“执行器”项目的Spring容器中。任务类需要加“@JobHandler(value=”名称”)”注解,因为“执行器”会根据该注解识别Spring容器中的任务。任务类需要继承统一接口“IJobHandler”,任务逻辑在execute方法中开发,因为“执行器”在接收到调度中心的调度请求时,将会调用“IJobHandler”的execute方法,执行任务逻辑。
开发步骤:可参考 “章节三” ;
原理:每个 “GLUE模式(Java)” 任务的代码,实际上是“一个继承自“IJobHandler”的实现类的类代码”,“执行器”接收到“调度中心”的调度请求时,会通过Groovy类加载器加载此代码,实例化成Java对象,同时注入此代码中声明的Spring服务(请确保Glue代码中的服务和类引用在“执行器”项目中存在),然后调用该对象的execute方法,执行任务逻辑。
开发步骤:可参考 “章节三” ;
原理:脚本任务的源码托管在调度中心,脚本逻辑在执行器运行。当触发脚本任务时,执行器会加载脚本源码在执行器机器上生成一份脚本文件,然后通过Java代码调用该脚本;并且实时将脚本输出日志写到任务日志文件中,从而在调度中心可以实时监控脚本运行情况;
目前支持的脚本类型如下:
- shell脚本:任务运行模式选择为 "GLUE模式(Shell)"时支持 "shell" 脚本任务;
- python脚本:任务运行模式选择为 "GLUE模式(Python)"时支持 "python" 脚本任务;
- nodejs脚本:务运行模式选择为 "GLUE模式(NodeJS)"时支持 "nodejs" 脚本任务;
执行器实际上是一个内嵌的Jetty服务器,默认端口9999(配置项:xxl.job.executor.port)。
在项目启动时,执行器会通过“@JobHandler”识别Spring容器中“Bean模式任务”,以注解的value属性为key管理起来。
“执行器”接收到“调度中心”的调度请求时,如果任务类型为“Bean模式”,将会匹配Spring容器中的“Bean模式任务”,然后调用其execute方法,执行任务逻辑。如果任务类型为“GLUE模式”,将会加载GLue代码,实例化Java对象,注入依赖的Spring服务(注意:Glue代码中注入的Spring服务,必须存在与该“执行器”项目的Spring容器中),然后调用execute方法,执行任务逻辑。
XXL-JOB会为每次调度请求生成一个单独的日志文件,需要通过 “XxlJobLogger.log” 打印执行日志,“调度中心”查看执行日志时将会加载对应的日志文件。
(历史版本通过重写LOG4J的Appender实现,存在依赖限制,该方式在新版本已经被抛弃)
日志文件存放的位置可在“执行器”配置文件进行自定义,默认目录格式为:/data/applogs/xxl-job/jobhandler/“格式化日期”/“数据库调度日志记录的主键ID.log”。
在JobHandler中开启子线程时,子线程将会将会把日志打印在父线程即JobHandler的执行日志中,方便日志追踪。
- 1、“调度中心”向“执行器”发送http调度请求: “执行器”中接收请求的服务,实际上是一台内嵌jetty服务器,默认端口9999;
- 2、“执行器”执行任务逻辑;
- 3、“执行器”http回调“调度中心”调度结果: “调度中心”中接收回调的服务,是针对执行器开放一套API服务;
调度中心向执行器发送的调度请求时使用RequestModel和ResponseModel两个对象封装调度请求参数和响应数据, 在进行通讯之前底层会将上述两个对象对象序列化,并进行数据协议以及时间戳检验,从而达到数据加密的功能;
自v1.5版本之后, 任务取消了”任务执行机器”属性, 改为通过任务注册和自动发现的方式, 动态获取远程执行器地址并执行。
AppName: 每个执行器机器集群的唯一标示, 任务注册以 "执行器" 为最小粒度进行注册; 每个任务通过其绑定的执行器可感知对应的执行器机器列表;
注册表: 见"XXL_JOB_QRTZ_TRIGGER_REGISTRY"表, "执行器" 在进行任务注册时将会周期性维护一条注册记录,即机器地址和AppName的绑定关系; "调度中心" 从而可以动态感知每个AppName在线的机器列表;
执行器注册: 任务注册Beat周期默认30s; 执行器以一倍Beat进行执行器注册, 调度中心以一倍Beat进行动态任务发现; 注册信息的失效时间被三倍Beat;
执行器注册摘除:执行器销毁时,将会主动上报调度中心并摘除对应的执行器机器信息,提高心跳注册的实时性;
为保证系统”轻量级”并且降低学习部署成本,没有采用Zookeeper作为注册中心,采用DB方式进行任务注册发现;
自v1.6.2之后,任务执行结果通过 “IJobHandler” 的返回值 “ReturnT” 进行判断;
当返回值符合 “ReturnT.code == ReturnT.SUCCESS_CODE” 时表示任务执行成功,否则表示任务执行失败,而且可以通过 “ReturnT.msg” 回调错误信息给调度中心;
从而,在任务逻辑中可以方便的控制任务执行结果;
执行器集群部署时,任务路由策略选择”分片广播”情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务,同时传递分片参数;可根据分片参数开发分片任务;
“分片广播” 以执行器为维度进行分片,支持动态扩容执行器集群从而动态增加分片数量,协同进行业务处理;在进行大数据量业务操作时可显著提升任务处理能力和速度。
“分片广播” 和普通任务开发流程一致,不同之处在于可以可以获取分片参数,获取分片参数进行分片业务处理。
// 可参考Sample示例执行器中的示例任务"ShardingJobHandler"了解试用
ShardingUtil.ShardingVO shardingVO = ShardingUtil.getShardingVo();
// 脚本任务入参固定为三个,依次为:任务传参、分片序号、分片总数。以Shell模式任务为例,获取分片参数代码如下
echo "分片序号 index = $2"
echo "分片总数 total = $3"
分片参数属性说明:
index:当前分片序号(从0开始),执行器集群列表中当前执行器的序号;
total:总分片数,执行器集群的总机器数量;
该特性适用场景如:
- 1、分片任务场景:10个执行器的集群来处理10w条数据,每台机器只需要处理1w条数据,耗时降低10倍;
- 2、广播任务场景:广播执行器机器运行shell脚本、广播集群节点进行缓存更新等
为提升系统安全性,调度中心和执行器进行安全性校验,双方AccessToken匹配才允许通讯;
调度中心和执行器,可通过配置项 “xxl.job.accessToken” 进行AccessToken的设置。
调度中心和执行器,如果需要正常通讯,只有两种设置;
调度中心提供了API服务,供执行器和业务方选择使用,目前提供的API服务有:
1、任务结果回调服务;
2、执行器注册服务;
3、执行器注册摘除服务;
4、触发任务单次执行服务,支持任务根据业务事件触发;
调度中心API服务位置:com.xxl.job.core.biz.AdminBiz.java
调度中心API服务请求参考代码:com.xxl.job.adminbiz.AdminBizTest.java
执行器提供了API服务,供调度中心选择使用,目前提供的API服务有:
1、心跳检测
2、忙碌检测
3、触发任务执行
4、获取Rolling Log
5、终止任务
执行器API服务位置:com.xxl.job.core.biz.ExecutorBiz
执行器API服务请求参考代码:com.xxl.executor.test.DemoJobHandlerTest
一次完整任务流程包括”调度(调度中心) + 执行(执行器)”两个阶段。
调度中心与业务解耦,只需部署一次后常年不需要维护。但是,执行器中托管运行着业务作业,作业上线和变更需要重启执行器,尤其是Bean模式任务。
执行器重启可能会中断运行中的任务。但是,XXL-JOB得益于自建执行器与自建注册中心,可以通过灰度上线的方式,避免因重启导致的任务中断的问题。
步骤如下:
- 1、执行器改为手动注册,下线一半机器列表(A组),线上运行另一半机器列表(B组);
- 2、等待A组机器任务运行结束并编译上线;执行器注册地址替换为A组;
- 3、等待B组机器任务运行结束并编译上线;执行器注册地址替换为A组+B组;
操作结束;
系统根据以下标准判断任务执行结果,可参考之。
– | Bean/Glue(Java) | Glue(Shell) 等脚本任务 |
---|---|---|
成功 | IJobHandler.SUCCESS | 0 |
失败 | IJobHandler.FAIL | -1(其他) |
失败重试 | IJobHandler.FAIL_RETRY | 101 |