opencv读取视频数据输出人脸识别结果
输入源可以使用视频,也可以使用图片输入,
具体在程序中有标注
#include
#include
#include
#include
#include "stdio.h"
using namespace cv;
using namespace std;
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip,int _iPicNum );
//读取文件,进行人脸识别
int Read_Fream()
{
//VideoCapture cap(0); //打开默认摄像头
//if(!cap.isOpened())
//{
// return -1;
//}
Mat frame;
Mat edges;
CascadeClassifier cascade, nestedCascade;
bool stop = false;
//把opencv自带的文件,放置在可执行文件同目录下
cascade.load("haarcascade_frontalface_alt.xml");
nestedCascade.load("haarcascade_eye.xml");
VideoCapture capture;
//文件采用多种格式,只要是opencv能是别的即可
capture.open("2518.mp4");
double rate = capture.get(CV_CAP_PROP_FPS);
printf("fream num %lf \n",rate);
int i = 0;
//namedWindow("Extracted frame");
//循环读取录像文件
while(capture.read(frame))
{
// imshow("Extracted frame",frame);
detectAndDraw( frame, cascade, nestedCascade,4,0 ,i + 1);
//保存照片文件时的下标
i++;
}
return 0;
}
//读取照片,进行人脸识别
int Read_Pic()
{
Mat frame;
Mat edges;
CascadeClassifier cascade, nestedCascade;
bool stop = false;
//把opencv自带的文件,放置在可执行文件同目录下
cascade.load("haarcascade_frontalface_alt.xml");
nestedCascade.load("haarcascade_eye.xml");
int i = 0;
for(i = 0;i < 4800;i+=20)
{
char cbuf[128] = {0};
printf("read picture %d \n",i + 1);
//图片按照自己命名规则读取
sprintf(cbuf,"../zhaopian/tupian/%d.jpg",i + 1);
frame = imread(cbuf);
detectAndDraw( frame, cascade, nestedCascade,4,0 ,i + 1);
}
waitKey();
}
int main()
{
//示例为读取文件进行人脸识别,还可以调用读取照片进行人脸识别
Read_Fream();
return 0;
}
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip,int _iPicNum )
{
int i = 0;
double t = 0;
//建立用于存放人脸的向量容器
vector faces, faces2;
//定义一些颜色,用来标示不同的人脸
const static Scalar colors[] = {
CV_RGB(0,0,255),
CV_RGB(0,128,255),
CV_RGB(0,255,255),
CV_RGB(0,255,0),
CV_RGB(255,128,0),
CV_RGB(255,255,0),
CV_RGB(255,0,0),
CV_RGB(255,0,255)} ;
//建立缩小的图片,加快检测速度
//nt cvRound (double value) 对一个double型的数进行四舍五入,并返回一个整型数!
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
// imshow("yuanshiimg",img);
//转成灰度图像,Harr特征基于灰度图
cvtColor( img, gray, CV_BGR2GRAY );
//灰度
// imshow("huidu",gray);
//改变图像大小,使用双线性差值
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
// 缩小尺寸
// imshow("suoxiaochicun",smallImg);
//变换后的图像进行直方图均值化处理
equalizeHist( smallImg, smallImg );
// equalizeHist( gray, smallImg );
//直方图均值处理
// imshow("zhifangtuyunzhichuli",smallImg);
//程序开始和结束插入此函数获取时间,经过计算求得算法执行时间
t = (double)cvGetTickCount();
//检测人脸
//detectMultiScale函数中smallImg表示的是要检测的输入图像为smallImg,faces表示检测到的人脸目标序列,1.1表示
//每次图像尺寸减小的比例为1.1,2表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大
//小都可以检测到人脸),CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(30, 30)为目标的
//最小最大尺寸
cascade.detectMultiScale( smallImg, faces,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
|CV_HAAR_SCALE_IMAGE
,Size(10, 10));
//如果使能,翻转图像继续检测
if( tryflip )
{
flip(smallImg, smallImg, 1);
//反转图像
// imshow("fanzhuangtuxiagn",smallImg);
cascade.detectMultiScale( smallImg, faces2,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
|CV_HAAR_SCALE_IMAGE
,Size(30, 30) );
for( vector::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
t = (double)cvGetTickCount() - t;
printf("`````````````nead times %lf \n",t);
// qDebug( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
int iEnable = 0;
for( vector::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
{
Mat smallImgROI;
vector nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius;
double aspect_ratio = (double)r->width/r->height;
printf("width %d height %d \n", r->width,r->height);
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
{
iEnable = 1;
//标示人脸时在缩小之前的图像上标示,所以这里根据缩放比例换算回去
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
printf("renlian weizhi x %d y %d radius %d \n", center.x, center.y,radius);
Rect rect1(center.x -radius, center.y - radius, radius *2 , radius*2);
Mat roi1;
img(rect1).copyTo(roi1); // copy the region rect1 from the image to roi1
char cbuf[12] = {0};
sprintf(cbuf,"test %d ",i);
char cbuf1[12] = {0};
sprintf(cbuf1,"jieguo/%d_%d.jpg",_iPicNum,i);
imwrite(cbuf1,roi1);
//imshow(cbuf, roi1);
circle( img, center, radius, color, 3, 8, 0 );
//img为源图像指针
//center为画圆的圆心坐标
//radius为圆的半径
//color为设定圆的颜色,规则根据B(蓝)G(绿)R(红)
//thickness 如果是正数,表示组成圆的线条的粗细程度。否则,表示圆是否被填充
//line_type 线条的类型。默认是8
//shift 圆心坐标点和半径值的小数点位数
}
else
{
rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
color, 3, 8, 0);
}
if(iEnable)
{
char cbuf[18] = {0};
sprintf(cbuf,"jieguo/%d.jpg",_iPicNum);
imwrite(cbuf,img);
}
// imshow( "shibiejieguo1111", img );
if( nestedCascade.empty() )
continue;
smallImgROI = smallImg(*r);
//同样方法检测人眼
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
//|CV_HAAR_DO_CANNY_PRUNING
|CV_HAAR_SCALE_IMAGE
,Size(30, 30) );
for( vector::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ )
{
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
radius = cvRound((nr->width + nr->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
#endif
}
//识别结果,需要支持显示才能显示
// imshow( "shibiejieguo", img );
}