利用yolov3自带的测试命令智能对data下的指定图片作测试,每一次只能测试一张图片,经网上找找大神资料后可以批量测试指定文件夹下的图片并保存在data/out下,带有标记的图片很直观的可以测试自己检测的结果,以VOC数据集为例
参考https://blog.csdn.net/mieleizhi0522/article/details/79989754后发现博主的在添加*GetFilename(char *p)函数的时候出现错误,自己的环境下无法识别“charchar”类型,
将博主的代码复制到自己的detec.c后,针对自己的detect.c实现GetFilename(char *p)的功能
1.声明char fn[30],*p,*q;
2.添加strcpy(fn,(p=strrchr(path,'/')) ? p+1 : path);
3.用fn代替原来的GetFilename(path)后可以实现以上功能(别忘记重新make)
添加代码如下:(三处代码需要修改,换成你自己的计算机的名字,或者选择一个存在图片的路径)
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen)
{
int person_num=0;
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", "data/names.list");
char **names = get_labels(name_list);
char fn[30],*p,*q;
image **alphabet = load_alphabet();
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
srand(2222222);
double time;
char buff[256];
char *input = buff;
float nms=.45;
int i=0;
while(1){
if(filename){
strncpy(input, filename, 256);
image im = load_image_color(input,0,0);
image sized = letterbox_image(im, net->w, net->h);
//image sized = resize_image(im, net->w, net->h);
//image sized2 = resize_max(im, net->w);
//image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h);
//resize_network(net, sized.w, sized.h);
layer l = net->layers[net->n-1];
float *X = sized.data;
time=what_time_is_it_now();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time);
int nboxes = 0;
detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
//printf("%d\n", nboxes);
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);
free_detections(dets, nboxes);
if(outfile)//
{
save_image(im, outfile);
}
else{
save_image(im, "predictions");
#ifdef OPENCV
cvNamedWindow("predictions", CV_WINDOW_NORMAL);
if(fullscreen){
cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
}
show_image(im, "predictions");
cvWaitKey(0);
cvDestroyAllWindows();
#endif
}
free_image(im);
free_image(sized);
if (filename) break;
}
else {
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
list *plist = get_paths(input);
char **paths = (char **)list_to_array(plist);
printf("Start Testing!\n");
int m = plist->size;
if(access("/home/yourname/darknet/data/out",0)==-1)//"/home/yourname/darknet/data"换成自己的路径
{
if (mkdir("/home/yourname/darknet/data/out",0777))//"/home/yourname/darknet/data"换成自己的路径
{
printf("creat file bag failed!!!");
}
}
for(i = 0; i < m; ++i){
char *path = paths[i];
image im = load_image_color(path,0,0);
image sized = letterbox_image(im, net->w, net->h);
//image sized = resize_image(im, net->w, net->h);
//image sized2 = resize_max(im, net->w);
//image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h);
//resize_network(net, sized.w, sized.h);
layer l = net->layers[net->n-1];
float *X = sized.data;
time=what_time_is_it_now();
network_predict(net, X);
printf("Try Very Hard:");
printf("%s: Predicted in %f seconds.\n", path, what_time_is_it_now()-time);
int nboxes = 0;
detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
//printf("%d\n", nboxes);
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
free_detections(dets, nboxes);
printf("person_num=%d\n",person_num);
if(outfile){
save_image(im, outfile);
}
else{
char b[2048];
strcpy(fn,(p=strrchr(path,'/')) ? p+1 : path);
sprintf(b,"/home/yourname/darknet/data/out/%s",fn);//"/home/yourname/darknet/data"换成自己的路径
save_image(im, b);
printf("save %s successfully!\n",fn);
#ifdef OPENCV
//cvNamedWindow("predictions", CV_WINDOW_NORMAL);
//if(fullscreen){
//cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
//}
//show_image(im, "predictions");
// cvWaitKey(0);
// cvDestroyAllWindows();
#endif
}
free_image(im);
free_image(sized);
if (filename) break;
}
}
}
}
运行./darknet detector test cfg/voc.data cfg/yolov3-voc.cfg backup/yolov3-voc_final.weights后可以实现批量图片的测试