28035与28027的ADC相仿
TMS320F28027的ADC功能:
1.12位双采样保持电路。
2.同时采样和序列采样方式。
3.全范围电压输入,0V到3.3V固定,或者VREFLO到VREFHI可调。
4.系统时钟全频运行,无需分频。
5.16输入通道。
6.16个SOC配置,设置触发,采样窗口,通道。
7.16个独立保存转换结果的结果寄存器。
8.多触发源。
9.9个灵活的PIE中断。
SOC操作原理:
与以往的ADC类型不同,TMS320F28027的ADC为3型,它是基于SOC的而不是基于序列的。SOC可以配置定义一个单独通道的独立转换。包括三种配置:开始转换的触发源,转换的通道,采样窗口的大小。每个SOC是独立配置的,可以有很多种触发源,通道,采样窗口大小的组合。如果需要,多个SOC可以配置成一样的触发源,通道,采样窗口大小。这提供了一种灵活的配置方法。可以配置转换在不同通道用不同的触发独立采样。可以用一个单独的触发过采样一个相同的通道。可以创建同一个触发不同通道的转换序列。
SOCx的触发源由ADCSOCxCTL寄存器中的TRIGSEL和ADCINTSOCSEL1或 ADCINTSOCSEL2 寄存器配置。软件可以通过ADCSOCFRC1寄存器产生一个SOC事件。通道和采样窗口大小可以通过ADCSOCxCTL寄存器的CHSEL和ACQPS配置。
采样保持窗口:
外部驱动能力的不同影响推动模拟信号速度和有效性。有一些电路需要更长的时间,使电荷正确地转移到ADC的采样电容。为了满足需求,ADC可以在SOC中独立地控制采样窗口的宽度。每个ADCSOCxCTL寄存器都有6位域,ACQPS,用来决定采样保持窗口的大小。写到这个位域的值要比期望的采样保持窗口的包括的周期要少1。例如:位域的值为15,那就需要16个周期来采样。允许最少的采样周期是7(ACQPS=6)。完成一次转换的时间由采样时间加转换时间(13个ADC时钟)组成。
ONESHOT单次转换支持:
该模式将允许你在循环计划的下一个SOC触发时,执行一次循环转换。这种模式只适用于循环轮中的通道。那些没有配置在循环轮中触发的通道,将会基于ADCSOCPRIORITYCTL寄存器中的SOCPRIORITY确定优先级。
ONESHOT模式对顺序和同时采样方式作用如下:
顺序模式:只有在RR模式中的下一个激活的soc才允许生成。触发其它所有的soc均会被忽略。
同时模式:如果当前RR指针指向的SOC使能了同时采样方式,激活的SOC会从当前的指针增加到二个,这是因为同时采样方式会产生SOCx和SOCx+1的结果,而且SOCx+1不会被用户触发。
AD转换的优先级:
当数个SOC标志同时被设置,两种形式的优先级顺序中的一种决定它们转换的顺序。默认的决定方式是轮转。在这种策略中,没有某个SOC会有比其它更高的优先级。优先级由轮转指针决定。ADCSOCPRIORITYCTL寄存器中的RRPOINTER指向最后转换的SOC。最高优先级SOC就是下一个比RRPOINTER值大的SOC,在SOC0到SOC15中轮回。复位时的值是32,因为0表示转换已经发生。当RRPOINTER值为32,最高优先级的是SOC0。当ADCCTL1.RESET被置位或者SOCPRICTL寄存器被写入,RRPOINTER被设备复位。
ADCSOCPRIORITYCTL寄存器的SOCPRIORITY可用于配置所有SOC的优先级。如果一个SOC被设置成高优先级,它将会当前转换完成之后中断轮转,把自己插入到下一次转换中。当转换完成,轮转在被中断处继续。如果两个高优先级的SOC同时被触发,编号较低的SOC被优先考虑。
同时采样模式:
在某些应用中,保持两个采样的信号之间的最小延迟是非常重要的。ADC模块包括双采样保持电路,允许两个不同的通道同时采样。同时采样模式是通过ADCSAMPLEMODE寄存器为两个soc配置的。偶数SOC与接着的奇数SOC作为一对,使用同一个使能位。这一对的动作如下:
1. 其中一个SOCx的触发将开始一对的转换。
2. 一对通道的转换包括A和B对应的CHSEL的值(0-7)。
3. 两个通道同时采样。
4. A通道先转换。
5. A通道转换结束,偶数EOCx将会产生一个脉冲。B通道转换结束,奇数EOCx将会产生一个脉冲。
6. A通道的转换结果将会存放在偶数ADCRESULTx寄存器中,A通道的转换结果将会存放在偶数ADCRESULTx寄存器中。
转换结束和中断操作:
由于有16个独立的SOCx配置,所以有16个EOCx标志。在序列采样中,EOCx是直接与SOCx相关联的。在同时采样模式中,如上5所述。根据ADCCTL1.INTPULSEPOS的设定,EOCx脉冲将会发生在转换开始或者结束时。
ADC模块包括9个能被PIE标志或者通过PIE的中断,每个中断都可以配置接受EOCx信号作为中断源。哪个EOCx信号作为中断源是在INTSELxNy寄存器中配置的。另外,ADCINT1和ADCINT2信号可作为一个SOCx的触发。这有利于建立一个连续的转换。
上电序列:
ADC复位后是关闭状态。在写任意ADC寄存器之前必须置位PCLKCR0寄存器中的ADCENCLK位。启动ADC的操作序列如下:
1. 如果希望使用外部参考源,在ADCCTL1寄存器的ADCREFSEL中使能这种模式。
2. 在ADCCTL1寄存器(5-7位ADCPWDN,ADCBGPWD,ADCREFPWD)中一起启动参考源,带隙和模拟电路。
3. 通过设置ADCCTL1寄存器的ADCENABLE使能ADC。
4. 在首次转换之前延时1毫秒。
ADC校准:
任何转换器都固有一个零偏移误差和满量程的增益误差。该ADC出厂校时在25摄氏度校正两者,同时允许用户修改任何偏移量的校正应对应用程序环境的影响,如环境温度。除非处在某些仿真环境下,或者需要修改出厂设置,用户不需要执行任何特定的操作。ADC将会在设备引导过程中得到合适的校正。
厂家设定与校准功能:
在制造和测试过程中,德州仪器伴随着一对内部晶振的设置,校正一些ADC设置。这些设置内嵌在保留的OTP memory中,作为一个C语言可调用函数Device_cal(),在Boot ROM启动引导过程中,程序调用这个函数写出厂设置到各个有效寄存器。在这种情况发生时,ADC和内部振荡器不会保留他们的指定参数。如果引导程序在仿真过程中被跳过,用户必须确保校准设置能被写入各寄存器,以确保ADC和内部振荡器满足在数据手册中的要求。这可以手动调用Device_cal(),或者在应用程序中设定。
ADC零点偏移校准:
零点偏移误差被定义为,当转换一个在VREFLO电压时得到的结果。这个基本误差会影响ADC的所有转换,包括满刻度的增益和线性度指标,决定了转换器的直流精度。零点偏移误差可能是正的,或者是负的,正的意味着转换VREFLO时得到一个正的结果。负的意味着转换一个高于VREFLO的电压结果仍会是0。为了更正这种错误,两种误差的补码都会被写入ADCOFFTRIM寄存器。这个寄存器的值在AD转换结果保存到ADC结果寄存器之前会被用到。此操作被完全包含在ADC内核,所以结果的定时将不会受到影响,ADC能够保持全动态范围通过修改微调值。调用Device_cal()把厂家校正的零点偏移写到ADCOFFTRIM寄存器,用户能够修改ADCOFFTRIM的值以减少环境造成偏移误差。这个可以通过设置ADCCTRL1的VREFLOCONV位实现,不需要任何一个ADC通道。
如下步骤重新校准ADC偏移:
1. Set ADCOFFTRIM to80 (50h)
2. SetADCCTL1.VREFLOCONV to 1
3. Perform multiple conversions on B5 (i.e. sampleVREFLO) and take an average to account for board noise
4. Set ADCOFFTRIM to 80 (50h) minus the averageobtained in step 3
5. SetADCCTL1.VREFLOCONV to 0.
文件DSP2802x(3x)_Adc.c中的AdcOffsetSelfCal()函数实现了以上操作。
ADC满量程增益校准:
增益错误是一个增量,随着输入电压的增加。满量程增益错误发生在输入电压最大值的时候。如同偏移误差一样,增益误差可能是正的也可能是负的。一个正的满量程增益误差,意味着输入未来最大值之前转换结果就已经到达最大值。一个负的满量程增益误差,意味着转换结果永远达不到最大值。校正函数Device_cal()会写一个厂家调整值到ADCREFTRIM寄存器以矫正ADC的满量程增益误差。这个寄存器在调用Device_cal()之后不应该被改动。
ADC偏移电流校正:
为了增加ADC的精度,Device_cal()函数同样会向ADC的一个寄存器写入厂家调整值矫正偏移电流,这个寄存器在调用Device_cal()之后不应该被修改。