最近几个月为了写小论文,题目是关于用深度学习做人脸检索的,所以需要选择一款合适的深度学习框架,caffe我学完以后感觉使用不是很方便,之后有人向我推荐了Keras,其简单的风格吸引了我,之后的四个月我都一直在使用Keras框架,由于我用的时候,tensorflow的相关教程还不是很多,所以后端我使用theano。这次的心得主要分成两篇,第一篇是聊聊开始使用keras容易遇到的坑,第二篇会在我论文发了之后,连同代码和一些更细节的东西一起发出来,我也会在结尾放出一些自己收集的CNN和tensorflow的相关教程,就这样。
先放上Keras官方中文文档的链接:http://keras-cn.readthedocs.io/en/latest/
还有Keras的QQ群号:119427073
本文由浅入深聊一聊我在这个过程中遇到的一些问题:
Keras中的fit函数会返回一个History对象,它的History.history属性会把之前的那些值全保存在里面,如果有验证集的话,也包含了验证集的这些指标变化情况,具体写法:
hist=model.fit(train_set_x,train_set_y,batch_size=256,shuffle=True,nb_epoch=nb_epoch,validation_split=0.1)
with open('log_sgd_big_32.txt','w') as f:
f.write(str(hist.history))
我觉得保存之前的loss,val这些值还是比较重要的,在之后的调参过程中有时候还是需要之前loss的结果作为参考的,特别是你自己添加了一些自己的loss的情况下,但是这样的写法会使整个文本的取名比较乱,所以其实可以考虑使用Aetros的插件,Aetros网址,这是一个基于Keras的一个管理工具,可以可视化你的网络结构,中间卷积结果的可视化,以及保存你以往跑的所有结果,还是很方便的,就是有些不稳定,有时候会崩。。。
其实一开始我也没搞清楚这个问题,拿着测试集当验证集用,其实验证集是从训练集中抽取出来用于调参的,而测试集是和训练集无交集的,用于测试所选参数用于该模型的效果的,这个还是不要弄错了。。。在Keras中,验证集的划分只要在fit函数里设置validation_split的值就好了,这个对应了取训练集中百分之几的数据出来当做验证集。但由于shuffle是在validation _split之后执行的,所以如果一开始训练集没有shuffle的话,有可能使验证集全是负样本。测试集的使用只要在evaluate函数里设置就好了。
print model.evaluate(test_set_x,test_set_y ,batch_size=256)
这里注意evaluate和fit函数的默认batch_size都是32,自己记得修改。
开始总会纠结哪个优化方法好用,但是最好的办法就是试,无数次尝试后不难发现,Sgd的这种学习率非自适应的优化方法,调整学习率和初始化的方法会使它的结果有很大不同,但是由于收敛确实不快,总感觉不是很方便,我觉得之前一直使用Sgd的原因一方面是因为优化方法不多,其次是用Sgd都能有这么好的结果,说明你网络该有多好啊。其他的Adam,Adade,RMSprop结果都差不多,Nadam因为是adam的动量添加的版本,在收敛效果上会更出色。所以如果对结果不满意的话,就把这些方法换着来一遍吧。
有很多初学者人会好奇怎么使sgd的学习率动态的变化,其实Keras里有个反馈函数叫LearningRateScheduler,具体使用如下:
def step_decay(epoch):
initial_lrate = 0.01
drop = 0.5
epochs_drop = 10.0
lrate = initial_lrate * math.pow(drop,math.floor((1+epoch)/epochs_drop))
return lrate
lrate = LearningRateScheduler(step_decay)
sgd = SGD(lr=0.0, momentum=0.9, decay=0.0, nesterov=False)
model.fit(train_set_x, train_set_y, validation_split=0.1, nb_epoch=200, batch_size=256, callbacks=[lrate])
上面代码是使学习率指数下降,具体如下图:
当然也可以直接在sgd声明函数中修改参数来直接修改学习率,学习率变化如下图:
sgd = SGD(lr=learning_rate, decay=learning_rate/nb_epoch, momentum=0.9, nesterov=True)
具体可以参考这篇文章Using Learning Rate Schedules for Deep Learning Models in Python with Keras
我现在所知道的解决方法大致只有两种,第一种就是添加dropout层,dropout的原理我就不多说了,主要说一些它的用法,dropout可以放在很多类层的后面,用来抑制过拟合现象,常见的可以直接放在Dense层后面,对于在Convolutional和Maxpooling层中dropout应该放置在Convolutional和Maxpooling之间,还是Maxpooling后面的说法,我的建议是试!这两种放置方法我都见过,但是孰优孰劣我也不好说,但是大部分见到的都是放在Convolutional和Maxpooling之间。关于Dropout参数的选择,这也是只能不断去试,但是我发现一个问题,在Dropout设置0.5以上时,会有验证集精度普遍高于训练集精度的现象发生,但是对验证集精度并没有太大影响,相反结果却不错,我的解释是Dropout相当于Ensemble,dropout过大相当于多个模型的结合,一些差模型会拉低训练集的精度。当然,这也只是我的猜测,大家有好的解释,不妨留言讨论一下。
当然还有第二种就是使用参数正则化,也就是在一些层的声明中加入L1或L2正则化系数,正则化的原理什么的我就不细说了,具体看代码:
C1 = Convolution2D(20, 4, 4, border_mode='valid', init='he_uniform', activation='relu',W_regularizer=l2(regularizer_params))
其中W_regularizer=l2(regularizer_params)就是用于设置正则化的系数,这个对于过拟合有着不错的效果,在一定程度上提升了模型的泛化能力。
BN层是真的吊,简直神器,除了会使网络搭建的时间和每个epoch的时间延长一点之外,但是关于这个问题我看到了无数的说法,对于卷积和池化层的放法,又说放中间的,也有说池化层后面的,对于dropout层,有说放在它后面的,也有说放在它前面的,对于这个问题我的说法还是试!虽然麻烦。。。但是DL本来不就是一个偏工程性的学科吗。。。还有一点是需要注意的,就是BN层的参数问题,我一开始也没有注意到,仔细看BN层的参数:
keras.layers.normalization.BatchNormalization(epsilon=1e-06, mode=0, axis=-1, momentum=0.9, weights=None, beta_init='zero', gamma_init='one')
mode:整数,指定规范化的模式,取0或1
0:按特征规范化,输入的各个特征图将独立被规范化。规范化的轴由参数axis指定。注意,如果输入是形如(samples,channels,rows,cols)的4D图像张量,则应设置规范化的轴为1,即沿着通道轴规范化。输入格式是‘tf’同理。
1:按样本规范化,该模式默认输入为2D
我们大都使用的都是mode=0也就是按特征规范化,对于放置在卷积和池化之间或之后的4D张量,需要设置axis=1,而Dense层之后的BN层则直接使用默认值就好了。
总结
这次暂时先写这么多,这次写的比较浅,还有很多拓展的东西都下次再写了,下面给大家附上一些不错的资料吧~
CNN基础:
【1】你真的了解CNN网络吗?
【2】CNN近期发展和实用技巧(上)
【3】深度 | 从入门到精通:卷积神经网络初学者指南(附论文)
【4】Convolutional Neural Networks (CNNs): An Illustrated Explanation
【5】Convolutional Neural Networks backpropagation: from intuition to derivation
【6】贺完结!CS231n官方笔记授权翻译总集篇发布
DL和Keras相关:
【1】深度学习中的激活函数导引
【2】深度网络的过拟合问题讨论
【3】How To Improve Deep Learning Performance
【4】深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
【5】Keras/Python深度学习中的网格搜索超参数调优(附源码)
【6】Yoshua Bengio等大神传授:26条深度学习经验
【7】leriomaggio/deep-learning-keras-euroscipy2016
Tensorflow相关:
【1】TensorFlow深度学习,一篇文章就够了
【2】alrojo/tensorflow-tutorial
【3】莫烦 tensorflow 神经网络 教程