python 和 matlab

Python Matlab 功能
str2 = str1.replace(old,new[,count]) dstStr= strrep(origStr,oldSubstr,newSubStr)
filepath = 'E:/data/1.jpg';
filepath2 = strrep(filepath,'data','lfw/data');
disp(filepath2);
替换子串

随机打乱:

Matlabs:

nsample = 10;
if ~exist('rand_ind.mat','file')
    rand_ind = randperm(nsample);
    save('rand_ind.mat','rand_ind');
else
    load('rand_ind.mat');% load rand_ind
    disp('load successfully!')
end
disp(rand_ind);

Python:

import random
import os
import numpy as np

rand_ind = range(10)

if not os.path.exists('rand_ind.npy'):
    random.shuffle(rand_ind) # 操作该对象本身
    np.save('rand_ind.npy',rand_ind)
else:
    rand_ind = np.load('rand_ind.npy')
    print 'load successfully!'

print rand_ind

在进行实验的时候,我们经常希望对数据集进行随机的打乱,但是又希望这种随机打乱的结果具有可重现性。下面给出matlab和python的实现方法:

Matlab:

nsample = 10;
feat_len = 1000;
train_data = rand(nsample,feat_len);%随机生成一个样本矩阵,含有10个样本,特征维数为1000

if ~exist('rand_ind.mat','file')
    rand_ind = randperm(nsample);
    save('rand_ind.mat','rand_ind');
else
    load('rand_ind.mat');% load rand_ind
    disp('load successfully!')
end
% 将样本按照生成的随机序列打乱
train_data = train_data(rand_ind,:);

disp(rand_ind);

Python:

import random
import os
import numpy as np

nsample = 10
feat_len = 1000
train_data = np.random.random((nsample,feat_len))

print train_data.shape
rand_ind = range(nsample)

if not os.path.exists('rand_ind.npy'):
    random.shuffle(rand_ind) # 操作该对象本身
    np.save('rand_ind.npy',rand_ind)
else:
    rand_ind = np.load('rand_ind.npy')
    print 'load successfully!'

print rand_ind

train_data2 = np.zeros(train_data.shape,dtype=train_data.dtype)

print train_data2.shape
print rand_ind[1]
for i in xrange(len(rand_ind)):
    train_data2[i,:] = train_data[rand_ind[i],:]

对于list的话,可以使用列表推导式,如;

mylist = ['a','b','c','d','e']
myorder = [3,2,0,1,4]
mylist =[mylist[i] for i in myorder]
print mylist

你可能感兴趣的:(Python,Matlab)