Hadoop学习之idea开发wordcount实例

在使用idea开发wordcount实例中,首先构建一个maven工程,需要引入的依赖有:


    
        apache
        http://maven.apache.org
    



    
        org.apache.hadoop
        hadoop-client
        2.7.3
    
    
        org.apache.hadoop
        hadoop-common
        2.7.3
    
    
        org.apache.hadoop
        hadoop-hdfs
        2.7.3
    
    
        org.apache.hadoop
        hadoop-client
        2.7.3
    
    
        junit
        junit
        3.8.1
        test
    


    
        
            org.apache.maven.plugins
            maven-dependency-plugin
            
                false
                true
                ./lib
            

        
    

在引入各个依赖后,点击自己创建的项目,选择open module setting如下所示; 

    Hadoop学习之idea开发wordcount实例_第1张图片

 之后,引入Hadoop的包,如下图所示:

Hadoop学习之idea开发wordcount实例_第2张图片

选择自己Hadoop的路径,之后选择以下所示的文件夹,选中引入即可。

Hadoop学习之idea开发wordcount实例_第3张图片

之后点击配置,配置本项目的文件输入路径和输出路径,在program arguments中前一个为文件输入路径,后一个为输出路径,当然,此时的路径均为hdfs集群路径,应该将创建的文件夹上传到hdfs集群中,然后把该路径写入,否则会报找不到文件路径的错误,出错解决办法参考我上一篇博客。

Hadoop学习之idea开发wordcount实例_第4张图片

配置完成后,将core-site.xml配置文件引入,如下图所示:

Hadoop学习之idea开发wordcount实例_第5张图片

在一切配置准备完成后,便可以进行编码了,首先创建一个java类名为WordCount,具体代码如下所示:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


import java.io.IOException;
import java.util.StringTokenizer;

public class WordCount {
//编写TokenizerMapper类继承Mapper类
    public static class TokenizerMapper extends Mapper{
        //定义变量one值设置为1,为每个单词定义value为1
        public static final IntWritable one=new IntWritable(1);
        private Text word=new Text();
        //编写map函数,其中输入参数为value(即为单词),输出参数为context
        public void map(Object key,Text values,Context context) throws IOException, InterruptedException {
            StringTokenizer str=new StringTokenizer(values.toString());
            while(str.hasMoreTokens()){
                word.set(str.nextToken());
                context.write(word,one);
            }
        }
    }
    //定义IntSumReducer继承Reducer
    public static class IntSumReducer extends Reducer{
        private IntWritable result=new IntWritable();
        //定义reduce方法
        public void reduce(Text key,Iterable values,Context context) throws IOException, InterruptedException {
            //遍历,将统计各个单词的总个数
            int sum=0;
            for (IntWritable val:values) {
                sum+=val.get();
            }
            result.set(sum);
            context.write(key,result);
        }
    }
    //编写主函数
    public static void main(String[] args) throws Exception{
        Configuration conf=new Configuration();

        Job job=Job.getInstance(conf,"wordCount");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        //添加文件的输入路径
        FileInputFormat.addInputPath(job, new Path(args[0]));
        //添加文件的输出路径
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true)?0:1);
    }
}

一切就绪后,点击运行便可运行出结果。当然在运行之前要开启hadoop集群。

 

你可能感兴趣的:(Hadoop)