返回值 |
操作函数 |
函数功能 |
|
RTE_DECLARE_PER_LCORE (unsigned, _lcore_id) |
|
|
RTE_DECLARE_PER_LCORE (rte_cpuset_t, _cpuset) |
|
static unsigned |
rte_lcore_id (void) |
返回当前运行的lcore ID |
static unsigned |
rte_get_master_lcore (void) |
返回管理lcore的ID |
static unsigned |
rte_lcore_count (void) |
返回系统执行lcore的数目 |
static int |
rte_lcore_index (int lcore_id) |
Return the index of the lcore starting from zero |
unsigned |
rte_socket_id (void) |
返回正在运行的lcore所对应的物理socket |
static unsigned |
rte_lcore_to_socket_id (unsigned lcore_id) |
获得指定lcore的物理socket ID |
static int |
rte_lcore_is_enabled (unsigned lcore_id) |
判断lcore是否enabled,如果enable,则返回True |
static unsigned |
rte_get_next_lcore (unsigned i, int skip_master, int wrap) |
获得下一个enable的lcore ID |
int |
rte_thread_set_affinity (rte_cpuset_t *cpusetp) |
|
void |
rte_thread_get_affinity (rte_cpuset_t *cpusetp) |
|
#include <rte_per_lcore.h>
#include <rte_eal.h>
#include <rte_launch.h>
struct lcore_config lcore_config[RTE_MAX_LCORE]
struct lcore_config {
unsigned detected; /**< true if lcore was detected */
pthread_t thread_id; /**< pthread identifier */
int pipe_master2slave[2]; /**< communication pipe with master */
int pipe_slave2master[2]; /**< communication pipe with master */
lcore_function_t * volatile f; /**< function to call */
void * volatile arg; /**< argument of function */
volatile int ret; /**< return value of function */
volatile enum rte_lcore_state_t state; /**< lcore state */
unsigned socket_id; /**< physical socket id for this lcore */
unsigned core_id; /**< core number on socket for this lcore */
};
函数功能:返回系统执行lcore的数目(和RTE_MAX_LCORE(宏64)不是一样的概念)。
函数功能:返回当前运行的lcore ID。
函数功能:返回管理lcore的ID。
函数功能:获得下一个enable的lcore ID。
函数功能:Return the index of the lcore starting from zero。
函数功能:判断lcore是否enabled,如果enable,则返回True。
函数功能:获得指定lcore的物理socket ID。
函数功能:返回正在运行的lcore所对应的物理socket。
函数功能:获得当前线程的core affinity。
函数功能:对当前线程设置core affinity,成功返回0,失败返回-1。
NUMA(Non-Uniform Memory Access,非一致性内存访问)和SMP(Symmetric Multi-Processor,对称多处理器系统)是两种不同的CPU硬件体系架构。
SMP的主要特征是共享,所有的CPU共享使用全部资源,例如内存、总线和I/O,多个CPU对称工作,彼此之间没有主次之分,平等地访问共享的资源,这样势必引入资源的竞争问题,从而导致它的扩展内力非常有限;NUMA架构在中大型系统上一直非常盛行,也是高性能的解决方案,在系统延迟方面表现也都很优秀。
在NUMA架构下,CPU的概念从大到小依次是:Socket、Core、Processor。随着多核技术的发展,我们将多个CPU封装在一起,这个封装一般被称为Socket(插槽),而Socket中的每个核心被称为Core,为了进一步提升CPU的处理能力,Intel又引入了HT(Hyper-Threading,超线程)的技术,一个Core打开HT之后,在OS看来就是两个核,当然这个核是逻辑上的概念,所以也被称为Logical Processor,本文简称为Processor。
NUMA体系结构中多了node的概念,主要用于解决core分组问题,在目前常见的分组中,一个socket里有一个node,每个node有自己的内部CPU、总线和内存,同时还可以访问其他node内的内存,NUMA最大的优势是可以方便增加CPU数量。
#lscpu
#numactl --hardware
备注:从指令的结果可以看出本机有1个NUMA node。(available: 1 nodes (0))
备注:从指令的结果可以看出本机有2个NUMA node。(available: 2 nodes (0-1))
# ls /sys/devices/system/node/node0
备注:node0包含0~11个processor。
一个socket对应主板上的CPU插槽,在/proc/cpuinfo中的physical id就是socket的ID。
# grep 'physical id' /proc/cpuinfo | awk -F: '{print $2 | "sort -un"}'
备注:通过以上信息,可以知道本机有2个socket,编号为0和1。
#grep 'physical id' /proc/cpuinfo | awk -F: '{print $2}' | sort | uniq -c
备注:每个socket对应6个processer。
#cat /proc/cpuinfo |grep core|sort -u
备注:一个socket有6个cores,它们的ID分别为0~5。
# grep 'processor' /proc/cpuinfo | wc -l
备注:本机共有12个processor。
# grep 'siblings' /proc/cpuinfo | sort -u
备注:每个socket中有几个processor也可以从siblings字段中获取。
#!/bin/bash
# Simple print cpu topology
# Author: kodango
function get_nr_processor()
{
grep '^processor' /proc/cpuinfo | wc -l
}
function get_nr_socket()
{
grep 'physical id' /proc/cpuinfo | awk -F: '{
print $2 | "sort -un"}' | wc -l
}
function get_nr_siblings()
{
grep 'siblings' /proc/cpuinfo | awk -F: '{
print $2 | "sort -un"}'
}
function get_nr_cores_of_socket()
{
grep 'cpu cores' /proc/cpuinfo | awk -F: '{
print $2 | "sort -un"}'
}
echo '===== CPU Topology Table ====='
echo
echo '+--------------+---------+-----------+'
echo '| Processor ID | Core ID | Socket ID |'
echo '+--------------+---------+-----------+'
while read line; do
if [ -z "$line" ]; then
printf '| %-12s | %-7s | %-9s |\n' $p_id $c_id $s_id
echo '+--------------+---------+-----------+'
continue
fi
if echo "$line" | grep -q "^processor"; then
p_id=`echo "$line" | awk -F: '{print $2}' | tr -d ' '`
fi
if echo "$line" | grep -q "^core id"; then
c_id=`echo "$line" | awk -F: '{print $2}' | tr -d ' '`
fi
if echo "$line" | grep -q "^physical id"; then
s_id=`echo "$line" | awk -F: '{print $2}' | tr -d ' '`
fi
done < /proc/cpuinfo
echo
awk -F: '{
if ($1 ~ /processor/) {
gsub(/ /,"",$2);
p_id=$2;
} else if ($1 ~ /physical id/){
gsub(/ /,"",$2);
s_id=$2;
arr[s_id]=arr[s_id] " " p_id
}
}
END{
for (i in arr)
printf "Socket %s:%s\n", i, arr[i];
}' /proc/cpuinfo
echo
echo '===== CPU Info Summary ====='
echo
nr_processor=`get_nr_processor`
echo "Logical processors: $nr_processor"
nr_socket=`get_nr_socket`
echo "Physical socket: $nr_socket"
nr_siblings=`get_nr_siblings`
echo "Siblings in one socket: $nr_siblings"
nr_cores=`get_nr_cores_of_socket`
echo "Cores in one socket: $nr_cores"
let nr_cores*=nr_socket
echo "Cores in total: $nr_cores"
if [ "$nr_cores" = "$nr_processor" ]; then
echo "Hyper-Threading: off"
else
echo "Hyper-Threading: on"
fi
echo
echo '===== END ====='
#lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 12 //共有12个逻辑CPU
On-line CPU(s) list: 0-11
Thread(s) per core: 1 //每个core有1个threads
Core(s) per socket: 6 //每个socket有6个cores
CPU socket(s): 2 //共有2个sockets
NUMA node(s): 2 //共有2个NUMA nodes
Vendor ID: GenuineIntel
CPU family: 6
Model: 45
Stepping: 7
CPU MHz: 2294.387 //主频
BogoMIPS: 4588.30
Virtualization: VT-x
L1d cache: 32K //L1 data cache
L1i cache: 32K //L1 instruction cache
L2 cache: 256K
L3 cache: 15360K
NUMA node0 CPU(s): 0-5
NUMA node1 CPU(s): 6-11
#numactl --hardware
# cat /proc/cpuinfo |grep 'physical id'|awk -F: '{print $2}'|sort|uniq -c
备注:可以知道有2个socket,1个socket上有12个processor。
#cat /proc/cpuinfo |grep core|sort -u
备注:可以知道1个socket上有6个cores,结合上个信息,可以知道开启了超线程。
lcore:
http://www.dpdk.org/doc/api/rte__lcore_8h.html
CPU Topology:
http://kodango.com/cpu-topology
SMP VS NUMA VS MPP:
http://xasun.com/article/4d/2076.html
http://www.ibm.com/developerworks/cn/linux/l-numa/index.html
http://blog.csdn.net/ustc_dylan/article/details/45667227