AI实战:上海垃圾分类系列(一)之快速搭建垃圾分类模型
AI实战:上海垃圾分类系列(二)之快速搭建垃圾分类模型后台服务
AI实战:上海垃圾分类系列(三)之快速搭建垃圾分类智能问答机器人
有上海网友说,如今每天去丢垃圾时,都要接受垃圾分类阿姨的灵魂拷问:“你是什么垃圾?”
Emmmm…
为了避免每天阿姨的灵魂拷问,我们最好是出门前提前对垃圾进精准分类。
下面提供一种快速搭建基于深度学习(AI)的垃圾分类模型,让垃圾分类不再难!
使用imagenet的1000个分类,模型网络使用inception-v3。再把1000个分类映射到垃圾的4个类别中,下面看详细步骤。
搭建环境
Ubuntu16.04
python3.5
tensorflow==1.4.0
代码:
classify_image.py:
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Simple image classification with Inception.
Run image classification with Inception trained on ImageNet 2012 Challenge data
set.
This program creates a graph from a saved GraphDef protocol buffer,
and runs inference on an input JPEG image. It outputs human readable
strings of the top 5 predictions along with their probabilities.
Change the --image_file argument to any jpg image to compute a
classification of that image.
Please see the tutorial and website for a detailed description of how
to use this script to perform image recognition.
https://tensorflow.org/tutorials/image_recognition/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import re
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
FLAGS = None
# pylint: disable=line-too-long
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# pylint: enable=line-too-long
class NodeLookup(object):
"""Converts integer node ID's to human readable labels."""
def __init__(self,
uid_chinese_lookup_path,
label_lookup_path=None,
uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
if not uid_lookup_path:
uid_lookup_path = os.path.join(
FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt')
#self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
self.node_lookup = self.load_chinese_map(uid_chinese_lookup_path)
def load(self, label_lookup_path, uid_lookup_path):
"""Loads a human readable English name for each softmax node.
Args:
label_lookup_path: string UID to integer node ID.
uid_lookup_path: string UID to human-readable string.
Returns:
dict from integer node ID to human-readable string.
"""
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path)
# Loads mapping from string UID to human-readable string
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
#p = re.compile(r'[n\d]*[ \S,]*')
p = re.compile(r'(n\d*)\t(.*)')
for line in proto_as_ascii_lines:
parsed_items = p.findall(line)
print(parsed_items)
uid = parsed_items[0]
human_string = parsed_items[1]
uid_to_human[uid] = human_string
# Loads mapping from string UID to integer node ID.
node_id_to_uid = {}
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2]
# Loads the final mapping of integer node ID to human-readable string
node_id_to_name = {}
for key, val in node_id_to_uid.items():
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name
return node_id_to_name
def load_chinese_map(self, uid_chinese_lookup_path):
# Loads mapping from string UID to human-readable string
proto_as_ascii_lines = tf.gfile.GFile(uid_chinese_lookup_path).readlines()
uid_to_human = {}
p = re.compile(r'(\d*)\t(.*)')
for line in proto_as_ascii_lines:
parsed_items = p.findall(line)
#print(parsed_items)
uid = parsed_items[0][0]
human_string = parsed_items[0][1]
uid_to_human[int(uid)] = human_string
return uid_to_human
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
def create_graph():
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(os.path.join(
FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
def run_inference_on_image(image):
"""Runs inference on an image.
Args:
image: Image file name.
Returns:
Nothing
"""
if not tf.gfile.Exists(image):
tf.logging.fatal('File does not exist %s', image)
image_data = tf.gfile.FastGFile(image, 'rb').read()
# Creates graph from saved GraphDef.
create_graph()
with tf.Session() as sess:
# Some useful tensors:
# 'softmax:0': A tensor containing the normalized prediction across
# 1000 labels.
# 'pool_3:0': A tensor containing the next-to-last layer containing 2048
# float description of the image.
# 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG
# encoding of the image.
# Runs the softmax tensor by feeding the image_data as input to the graph.
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
predictions = sess.run(softmax_tensor,
{'DecodeJpeg/contents:0': image_data})
predictions = np.squeeze(predictions)
# Creates node ID --> chinese string lookup.
node_lookup = NodeLookup(uid_chinese_lookup_path='./data/imagenet_2012_challenge_label_chinese_map.pbtxt')
top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1]
for node_id in top_k:
human_string = node_lookup.id_to_string(node_id)
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
#print('node_id: %s' %(node_id))
def maybe_download_and_extract():
"""Download and extract model tar file."""
dest_directory = FLAGS.model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (
filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
def main(_):
maybe_download_and_extract()
image = (FLAGS.image_file if FLAGS.image_file else
os.path.join(FLAGS.model_dir, 'cropped_panda.jpg'))
run_inference_on_image(image)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# classify_image_graph_def.pb:
# Binary representation of the GraphDef protocol buffer.
# imagenet_synset_to_human_label_map.txt:
# Map from synset ID to a human readable string.
# imagenet_2012_challenge_label_map_proto.pbtxt:
# Text representation of a protocol buffer mapping a label to synset ID.
parser.add_argument(
'--model_dir',
type=str,
default='/tmp/imagenet',
help="""\
Path to classify_image_graph_def.pb,
imagenet_synset_to_human_label_map.txt, and
imagenet_2012_challenge_label_map_proto.pbtxt.\
"""
)
parser.add_argument(
'--image_file',
type=str,
default='',
help='Absolute path to image file.'
)
parser.add_argument(
'--num_top_predictions',
type=int,
default=5,
help='Display this many predictions.'
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
下载模型
python classify_image.py
模型测试
从网上找一张图片,保存为:./img/2.png,如下:
测试方法:
python classify_image.py --image_file ./data/2.png
结果输出:
cellular telephone, cellular phone, cellphone, cell, mobile phone (score = 0.70547)
iPod (score = 0.06823)
notebook, notebook computer (score = 0.04934)
modem (score = 0.01472)
hand-held computer, hand-held microcomputer (score = 0.00770)
可以看到识别结果还是蛮准的,而且给出了top5.
使用中文标签:
测试方法:
python classify_image.py --image_file ./data/2.png
结果输出:
移动电话,移动电话,手机,手机,手机 (score = 0.70547)
iPod (score = 0.06823)
笔记本,笔记本电脑 (score = 0.04934)
调制解调器 (score = 0.01472)
手持电脑,手持微电脑 (score = 0.00770)
有了中文分类类别,下面就可以做垃圾分类映射了。
上海对垃圾分干垃圾、湿垃圾、可回收物、有害垃圾四种,生活垃圾主要分干垃圾和湿垃圾。
上海生活垃圾分类标准及投放要求 【点击查看】
核心思想:
1、使用4类垃圾分类数据作为标注数据,形如
0 饮料瓶
1 废电池
2 绿叶菜
3 卫生间用纸
2、使用TextCNN训练分类模型
实战
1、数据标注
标注结果见:./data/train_data.txt , ./data/vilid_data.txt
2、核心代码:
predict.py :
import tensorflow as tf
import numpy as np
import os, sys
import data_input_helper as data_helpers
import jieba
# Parameters
# Data Parameters
tf.flags.DEFINE_string("w2v_file", "./data/word2vec.bin", "w2v_file path")
# Eval Parameters
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_string("checkpoint_dir", "./runs/checkpoints/", "Checkpoint directory from training run")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
class RefuseClassification():
def __init__(self):
self.w2v_wr = data_helpers.w2v_wrapper(FLAGS.w2v_file)#加载词向量
self.init_model()
self.refuse_classification_map = {0: '可回收垃圾', 1: '有害垃圾', 2: '湿垃圾', 3: '干垃圾'}
def deal_data(self, text, max_document_length = 10):
words = jieba.cut(text)
x_text = [' '.join(words)]
x = data_helpers.get_text_idx(x_text, self.w2v_wr.model.vocab_hash, max_document_length)
return x
def init_model(self):
checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
self.sess = tf.Session(config=session_conf)
self.sess.as_default()
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(self.sess, checkpoint_file)
# Get the placeholders from the graph by name
self.input_x = graph.get_operation_by_name("input_x").outputs[0]
self.dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
# Tensors we want to evaluate
self.predictions = graph.get_operation_by_name("output/predictions").outputs[0]
def predict(self, text):
x_test = self.deal_data(text, 5)
predictions = self.sess.run(self.predictions, {self.input_x: x_test, self.dropout_keep_prob: 1.0})
refuse_text = self.refuse_classification_map[predictions[0]]
return refuse_text
if __name__ == "__main__":
if len(sys.argv) == 2:
test = RefuseClassification()
res = test.predict(sys.argv[1])
print('classify:', res)
3、测试
python textcnn/predict.py '猪肉饺子'
输出结果:
`classify: 湿垃圾`
import numpy as np
import os, sys
sys.path.append('textcnn')
from textcnn.predict import RefuseClassification
from classify_image import *
class RafuseRecognize():
def __init__(self):
self.refuse_classification = RefuseClassification()
self.init_classify_image_model()
self.node_lookup = NodeLookup(uid_chinese_lookup_path='./data/imagenet_2012_challenge_label_chinese_map.pbtxt',
model_dir = '/tmp/imagenet')
def init_classify_image_model(self):
create_graph('/tmp/imagenet')
self.sess = tf.Session()
self.softmax_tensor = self.sess.graph.get_tensor_by_name('softmax:0')
def recognize_image(self, image_data):
predictions = self.sess.run(self.softmax_tensor,
{'DecodeJpeg/contents:0': image_data})
predictions = np.squeeze(predictions)
top_k = predictions.argsort()[-5:][::-1]
result_list = []
for node_id in top_k:
human_string = self.node_lookup.id_to_string(node_id)
#print(human_string)
human_string = ''.join(list(set(human_string.replace(',', ',').split(','))))
#print(human_string)
classification = self.refuse_classification.predict(human_string)
result_list.append('%s => %s' % (human_string, classification))
return '\n'.join(result_list)
if __name__ == "__main__":
if len(sys.argv) == 2:
test = RafuseRecognize()
image_data = tf.gfile.FastGFile(sys.argv[1], 'rb').read()
res = test.recognize_image(image_data)
print('classify:\n%s' %(res))
垃圾分类识别
识别
python rafuse.py img/2.png
输出结果:
移动电话手机 => 可回收垃圾
iPod => 湿垃圾
笔记本笔记本电脑 => 可回收垃圾
调制解调器 => 湿垃圾
手持电脑手持微电脑 => 可回收垃圾
到这里整个垃圾分类识别模型基本完成,可以看到有个别错误,由于训练数据太少了导致的,这里就不在优化了。
完整工程:https://download.csdn.net/download/zengnlp/11290336
包含:
1、垃圾分类映射的训练数据、测试数据
2、完整代码
https://github.com/tensorflow/models