- Apache Doris整合Iceberg + Flink CDC构建实时湖仓体的联邦查询分析架构
MfvShell
apacheflink架构Flink
随着大数据技术的迅猛发展,构建实时湖仓体并进行联邦查询分析成为了许多企业的迫切需求。在这篇文章中,我们将探讨如何利用ApacheDoris整合Iceberg和FlinkCDC来构建这样一个架构,并提供相应的源代码示例。简介实时湖仓体是一种灵活、可扩展的数据架构,结合了数据湖和数据仓库的优势。ApacheDoris是一款开源的分布式SQL引擎,专注于实时分析和查询。Iceberg是一种开放式表格格式
- flink从kafka读取数据写入clickhouse本地表的实现
Breatrice_li
kafkaflink分布式大数据
实现功能因为直接写clickhouse的分布式表在数据量比较大的时候会有各种问题,所以做了一个flink读取kafka数据然后路由写入到相应的本地表节点,并且关于不同的表的配置信息可以随时更改并设置生效时间。实现流程首先从kafka将数据读取过来然后进行相应的处理及逻辑判断写入到对应的clickhouse表格中最后根据CDC读取来的配置信息进行相应节点的hash路由,直接写入本地表读取kafka数
- demo flink写入kafka_Flink 写入数据到 Kafka
ONES Piece
demoflink写入kafka
Flink写入数据到Kafka前言通过Flink官网可以看到Flink里面就默认支持了不少sink,比如也支持Kafkasinkconnector(FlinkKafkaProducer),那么这篇文章我们就来看看如何将数据写入到Kafka。准备Flink里面支持Kafka0.8、0.9、0.10、0.11.这里我们需要安装下Kafka,请对应添加对应的FlinkKafkaconnector依赖的版
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- Flink实践:通过Flink SQL进行SFTP文件的读写操作
kkk1622245
flinksql大数据
在大数据处理领域,ApacheFlink出类拔萃,它是一个高性能、易扩展、用于处理有界和无界数据流的分布式处理引擎。FlinkSQL是ApacheFlink提供的一种声明式API,允许开发者以SQL的形式,轻松实现复杂的数据流和批处理分析。本文将重点探讨如何通过FlinkSQL来实现对SFTP文件的读写操作,这是在实际应用中经常遇到的一种场景。Flink与SFTP文件的读写在很多实际应用场景中,数
- Flink流式计算系统
xyzkenan
Flink大数据大数据开发
本文将以这些概念为基础,逐一介绍Flink的发展背景、核心概念、时间推理与正确性工具、安装部署、客户端操作、编程API等内容,让开发人员对Flink有较为全面的认识并拥有一些基础操作与编程能力。一、发展背景1.1数据处理架构在流处理器出现之前,数据处理架构主要由批处理器组成,其是对无限数据的有限切分,具有吞吐量大、数据较为准确的特点。然而我们知道,批处理器在时间切分点附近仍然无法保证数据结果的真实
- Flink 初体验:从 Hello World 到实时数据流处理
小诸葛IT课堂
flink大数据
在大数据处理领域,ApacheFlink以其卓越的流批一体化处理能力脱颖而出,成为众多企业构建实时数据应用的首选框架。本文将带领你迈出Flink学习的第一步,从基础概念入手,逐步引导你编写并运行第一个Flink程序——经典的WordCount,让你亲身感受Flink在实时数据流处理方面的强大魅力。一、Flink基础概念速览1.1什么是FlinkFlink是一个分布式流批一体化开源平台,旨在对无界和
- 时间语义与窗口操作:Flink 流式计算的核心逻辑
小诸葛IT课堂
flink大数据
在实时数据流处理中,时间是最为关键的维度之一。Flink通过灵活的时间语义和丰富的窗口类型,为开发者提供了强大的时间窗口分析能力。本文将深入解析Flink的时间语义机制,并通过实战案例演示如何利用窗口操作实现实时数据聚合。一、Flink时间语义详解1.1三种时间概念1.1.1EventTime(事件时间)定义:事件实际发生的时间,由事件本身携带的时间戳决定应用场景:需要准确反映事件真实顺序的场景(
- Dinky × Jiron:打造高效智能的数据处理平台
jiron开源
平台开发flink大数据hive数据仓库kafkaetl工程师clickhouse
Dinky×Jiron:打造高效智能的数据处理平台JironGitHub地址https://github.com/642933588/jiron-cloudhttps://gitee.com/642933588/jiron-cloud将基于ApacheFlink的实时计算平台Dinky成功集成至Jiron数据开发平台,以进一步增强平台的数据处理能力,提升数据处理效率与灵活性,同时优化用户体验并降低
- 数据分析大数据面试题大杂烩01
爱学习的菜鸟罢了
大数据flink大数据面试hivehadoopkafka
互联网:通过埋点实时计算用户浏览频次用优惠券等措施吸引用户,通过历史信息用非智能学习的title方式构造用户画像(抖音,京东)电信,银行统计营收和针对用户的个人画像:处理大量非实时数据政府:健康码,扫码之后确诊,找出与确诊对象有关联的人订单订单表(除商品以外所有信息),商品详情表,通过搜集用户title进行定制化推荐点击流数据通过埋点进行用户点击行为分析FLINK一般用来做实时SPARK一般用来做
- Different number of columns
sunyaox
flinkflink异常
org.apache.flink.client.program.ProgramInvocationException:Themainmethodcausedanerror:Columntypesofqueryresultandsinkforregisteredtable‘photoTradeInfoHive.db_audit.ods_photo_trade’donotmatch.Cause:Dif
- 基于 Flink 的海量日志实时处理系统的实践
zhisheng_blog
大数据实时计算引擎Flink实战与性能优化
海量日志实时处理需求分析在11.5节中讲解了Flink如何实时处理异常的日志,在那节中对比分析了几种常用的日志采集工具。我们也知道通常在排查线上异常故障的时候,查询日志总是必不可缺的一部分,但是现在微服务架构下日志都被分散到不同的机器上,日志查询就会比较困难,所以统一的日志收集几乎也是每家公司必不可少的。据笔者调研,不少公司现在是有日志统一的收集,也会去做日志的实时ETL,利用一些主流的技术比如E
- Java_实例变量和局部变量及this关键字详解
Matrix70
Javajava开发语言
最近得看看Java,想学一学Flink实时的东西了,当然Scala语法也有这样的规定,简单看一下这两个吧,都比较容易忽视实例变量和局部变量实例变量和局部变量是常见的两种变量类型,区别作用域:实例变量:实例变量属于类的实例,可以在整个类中被访问和使用。每个类的实例(对象)都有一份自己的实例变量副本。局部变量:局部变量只在声明它的方法或代码块中可见,超出该范围就无法访问。生存周期:实例变量:实例变量的
- Flink架构组件JobManager和TaskManager
m0_37651941
flink架构大数据
JobManager和TaskManager交互通过Task对象ActorSystem是Akka最重要的一个组件。JobDispatcher负责接收Client提交的JobGraph对象,然后拆分成不同的作业,提交到TaskManager.这个过程会涉及到Job的分发。standlone模式和yarn模式的ResourceManager是不同的实现。TaskManager启动后会主动向JobMan
- flink读kafka写入mysql_Flink 1.9 实战:使用 SQL 读取 Kafka 并写入 MySQL
苏远岫
上周六在深圳分享了《FlinkSQL1.9.0技术内幕和最佳实践》,会后许多小伙伴对最后演示环节的Demo代码非常感兴趣,迫不及待地想尝试下,所以写了这篇文章分享下这份代码。希望对于FlinkSQL的初学者能有所帮助。完整分享可以观看Meetup视频回顾:https://developer.aliyun.com/live/1416这份代码主要由两部分组成:1)能用来提交SQL文件的SqlSubmi
- Flink 1.17.2 版本用 java 读取 starrocks
小强签名设计
flinkjavapython
文章目录方法一:使用FlinkJDBC连接器(兼容MySQL协议)方法二:使用StarRocksFlinkConnector(推荐) 在Flink1.17.2中使用Java读取StarRocks数据,可以通过JDBC连接器或StarRocks官方提供的FlinkConnector实现。以下是两种方法的详细步骤:方法一:使用FlinkJDBC连接器(兼容MySQL协议) StarRocks兼容M
- Flink SQL 读取 Kafka 数据到 Mysql 实战
小技工丨
大数据技术学习flinksqlkafka
Flink1.9.2SQL读取Kafka数据到Mysql实战案例需求通过Flinksql使用DDL的方式,实现读取kafka用户行为数据,对数据进行实时处理,根据时间分组,求PV和UV,然后输出到mysql中。1、kafka中的消息的格式数据以JSON格式编码,格式如下:{"user_id":1101,"item_id":1875,"category_id":456876,"behavior":"
- 本地docker安装zookeeper,kafka,flink
a724952091
flinkkafkadocker
首先安装zookeeper这里zookeeper的安装是为了去使用kafka这里我们安装的是wurstmeister的kafka和zookeeper镜像也是在hub.docker.com网站上,Star最多的kafka镜像直接在cmd执行run命令(前提是有本地docker。。。)第一次使用因为本地没有此镜像会去下载dockerrun-d--namezookeeper-p2181-twurstme
- 使用flinkCDC监听 mysql 数据 到mysql报错
从零开始·
mysqlapache数据库flinkflinkcdc
报错:java.lang.NoClassDefFoundError:org/apache/flink/table/api/TableException解决:完整依赖1.12.02.0.0org.apache.flinkflink-java${flink-version}org.apache.flinkflink-streaming-java_2.11${flink-version}org.apac
- flink(十一):Table&Sql实现窗口水印计算
羽落风起
大数据flinkflink
文章目录分享说明实现讲解代码总结分享大数据博客列表说明本博客每周五更新一次。本文属于实战,讲解Flink1.12版本java代码使用时间窗口加水印实现,具体需求为5秒内用户订单总数、订单最大金额、最小金额实现讲解代码结构分为5部分,准备环境env数据输入source模拟数据生成数据处理transformation创建水印、窗口执行任务基于sql和table风格实现对应功能数据输出sink启动任务e
- FlinkCDC3.3 使用 Mysql 8.4 报错
_lizhiqiang
mysql数据库flinkflinkcdcseatunnel
一、报错日志Causedby:io.debezium.DebeziumException:org.apache.flink.util.FlinkRuntimeException:Cannotreadthebinlogfilenameandpositionvia'SHOWMASTERSTATUS'.Makesureyourserveriscorrectlyconfiguredatorg.apache
- Flink-DataStreamAPI-生成水印
隔着天花板看星星
flink大数据分布式
下面我们将学习Flink提供的用于处理事件时间戳和水印的API,也会介绍有关事件时间、流转时长和摄取时间,下面就让我们跟着官网来学习吧一、水印策略介绍为了处理事件时间,Flink需要知道事件时间戳,这意味着流中的每个元素都需要分配其事件时间戳。这通常是通过使用TimestampAssigner从元素中的某个字段访问/提取时间戳来完成的。时间戳分配与生成水印密切相关,水印告诉系统事件时间的进度。我们
- flink-cdc实时增量同步mysql数据到elasticsearch
大数据技术派
#Flinkelasticsearchflinkmysql
什么是CDC?CDC是(ChangeDataCapture变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入INSERT、更新UPDATE、删除DELETE等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。1.环境准备mysqlelasticsearchflinkonyarn说明:如果没有安装hadoop,那么可以不用yarn,直
- flink+kafka实现流数据处理学习
上海研博数据
java
在应用系统的建设过程中,通常都会遇到需要实时处理数据的场景,处理实时数据的框架有很多,本文将以一个示例来介绍flink+kafka在流数据处理中的应用。1、概念介绍flink:是一个分布式、高可用、高可靠的大数据处理引擎,提供了一种高效、可靠、可扩展的方式来处理和分析实时数据。kafka:是用于构建实时数据管道和流应用程序并具有横向扩展,容错,wickedfast(变态快)等优点的一种消息中间件。
- Flink实时流处理入门与实践
随风九天
springjavaFlink实时流
一、引言1.1实时流处理的重要性在当今数据驱动的时代,实时数据处理变得越来越重要。企业需要从不断产生的大量数据中快速提取有价值的信息,以支持决策制定和业务优化。实时流处理技术能够实时处理数据流,提供即时的洞察和响应,从而提高业务效率和竞争力。1.2Flink简介ApacheFlink是一个开源的分布式流处理框架,支持批处理和流处理。Flink提供了高吞吐量、低延迟和精确一次(exactly-onc
- kafka + flink +mysql 案例
angen2018
javakafkaflink
假设你有两个Kafka主题:user_activities_topic和product_views_topic,并且你希望将user_activities_topic中的数据写入到user_activities表,而将product_views_topic中的数据写入到product_views表。mavenorg.apache.flinkflink-streaming-java_2.121.14
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- Flink 实战:如何计算实时热门合约
WuJiWeb3
区块链链上数据分析flink大数据web3数据分析智能合约kafkabigdata
本文将通过使用Flink框架实现实时热门合约需求。实际业务过程中,如何判断合约是否属于热门合约,可以从以下几个方面进行分析,比如:交易数量:合约被调用的次数可以作为其热门程度的指标之一。交易金额:合约处理的资金量也是评判热门程度的重要指标。活跃用户数量:调用合约的用户数量可以反映合约的受欢迎程度。交易频率:合约的调用频率可以反映其热门程度和使用情况。但我们本次目的主要是关于学习FlinkAPI的一
- Hadoop、Spark、Flink Shuffle对比
逆袭的小学生
hadoopsparkflink
一、Hadoop的shuffle前置知识:Map任务的数量由Hadoop框架自动计算,等于分片数量,等于输入文件总大小/分片大小,分片大小为HDFS默认值128M,可调Reduce任务数由用户在作业提交时通过Job.setNumReduceTasks(int)设置数据分配到Reduce任务的时间点,在Map任务执行期间,通过Partitioner(分区器)确定每个键值对的目标Reduce分区。默认
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_