摘要:LeNet-5是Yann LeCun在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一。可以说,LeNet-5就相当于编程语言入门中的“Hello world!”。
华为的昇腾训练芯片一直是大家所期待的,目前已经开始提供公测,如何在昇腾训练芯片上运行一个训练任务,这是目前很多人都在采坑过程中,所以我写了一篇指导文章,附带上所有相关源代码。注意,本文并没有包含环境的安装,请查看另外相关文档。
环境约束:昇腾910目前仅配套TensorFlow 1.15版本。
基础镜像上传之后,我们需要启动镜像命令,以下命令挂载了8块卡(单机所有卡):
docker run -it --net=host --device=/dev/davinci0 --device=/dev/davinci1 --device=/dev/davinci2 --device=/dev/davinci3 --device=/dev/davinci4 --device=/dev/davinci5 --device=/dev/davinci6 --device=/dev/davinci7 --device=/dev/davinci_manager --device=/dev/devmm_svm --device=/dev/hisi_hdc -v /var/log/npu/slog/container/docker:/var/log/npu/slog -v /var/log/npu/conf/slog/slog.conf:/var/log/npu/conf/slog/slog.conf -v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ -v /usr/local/Ascend/driver/tools/:/usr/local/Ascend/driver/tools/ -v /data/:/data/ -v /home/code:/home/local/code -v ~/context:/cache ubuntu_18.04-docker.arm64v8:v2 /bin/bash
设置环境变量并启动手写字训练网络:
#!/bin/bash
export LD_LIBRARY_PATH=/usr/local/lib/:/usr/local/HiAI/runtime/lib64
export PATH=/usr/local/HiAI/runtime/ccec_compiler/bin:$PATH
export CUSTOM_OP_LIB_PATH=/usr/local/HiAI/runtime/ops/framework/built-in/tensorflow
export DDK_VERSION_PATH=/usr/local/HiAI/runtime/ddk_info
export WHICH_OP=GEOP
export NEW_GE_FE_ID=1
export GE_AICPU_FLAG=1
export OPTION_EXEC_EXTERN_PLUGIN_PATH=/usr/local/HiAI/runtime/lib64/plugin/opskernel/libfe.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/libaicpu_plugin.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/libge_local_engine.so:/usr/local/H
iAI/runtime/lib64/plugin/opskernel/librts_engine.so:/usr/local/HiAI/runtime/lib64/libhccl.so
export OP_PROTOLIB_PATH=/usr/local/HiAI/runtime/ops/built-in/
export DEVICE_ID=2
export PRINT_MODEL=1
#export DUMP_GE_GRAPH=2
#export DISABLE_REUSE_MEMORY=1
#export DUMP_OP=1
#export SLOG_PRINT_TO_STDOUT=1
export RANK_ID=0
export RANK_SIZE=1
export JOB_ID=10087
export OPTION_PROTO_LIB_PATH=/usr/local/HiAI/runtime/ops/op_proto/built-in/
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/Ascend/fwkacllib/lib64/:/usr/local/Ascend/driver/lib64/common/:/usr/local/Ascend/driver/lib64/driver/:/usr/local/Ascend/add-ons/
export PYTHONPATH=$PYTHONPATH:/usr/local/Ascend/opp/op_impl/built-in/ai_core/tbe
export PATH=$PATH:/usr/local/Ascend/fwkacllib/ccec_compiler/bin
export ASCEND_HOME=/usr/local/Ascend
export ASCEND_OPP_PATH=/usr/local/Ascend/opp
export SOC_VERSION=Ascend910
rm -f *.pbtxt
rm -f *.txt
rm -r /var/log/npu/slog/*.log
rm -rf train_url/*
python3 mnist_train.py
以下训练案例中我使用的lecun大师的LeNet-5网络,先简单介绍LeNet-5网络:
LeNet5诞生于1994年,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。自从1988年开始,在多年的研究和许多次成功的迭代后,这项由Yann LeCun完成的开拓性成果被命名为LeNet5。
LeNet-5包含七层,不包括输入,每一层都包含可训练参数(权重),当时使用的输入数据是32*32像素的图像。下面逐层介绍LeNet-5的结构,并且,卷积层将用Cx表示,子采样层则被标记为Sx,完全连接层被标记为Fx,其中x是层索引。
层C1是具有六个5*5的卷积核的卷积层(convolution),特征映射的大小为28*28,这样可以防止输入图像的信息掉出卷积核边界。C1包含156个可训练参数和122304个连接。
层S2是输出6个大小为14*14的特征图的子采样层(subsampling/pooling)。每个特征地图中的每个单元连接到C1中的对应特征地图中的2*2个邻域。S2中单位的四个输入相加,然后乘以可训练系数(权重),然后加到可训练偏差(bias)。结果通过S形函数传递。由于2*2个感受域不重叠,因此S2中的特征图只有C1中的特征图的一半行数和列数。S2层有12个可训练参数和5880个连接。
层C3是具有16个5-5的卷积核的卷积层。前六个C3特征图的输入是S2中的三个特征图的每个连续子集,接下来的六个特征图的输入则来自四个连续子集的输入,接下来的三个特征图的输入来自不连续的四个子集。最后,最后一个特征图的输入来自S2所有特征图。C3层有1516个可训练参数和156 000个连接。
层S4是与S2类似,大小为2*2,输出为16个5*5的特征图。S4层有32个可训练参数和2000个连接。
层C5是具有120个大小为5*5的卷积核的卷积层。每个单元连接到S4的所有16个特征图上的5*5邻域。这里,因为S4的特征图大小也是5*5,所以C5的输出大小是1*1。因此S4和C5之间是完全连接的。C5被标记为卷积层,而不是完全连接的层,是因为如果LeNet-5输入变得更大而其结构保持不变,则其输出大小会大于1*1,即不是完全连接的层了。C5层有48120个可训练连接。
F6层完全连接到C5,输出84张特征图。它有10164个可训练参数。这里84与输出层的设计有关。
LeNet的设计较为简单,因此其处理复杂数据的能力有限;此外,在近年来的研究中许多学者已经发现全连接层的计算代价过大,而使用全部由卷积层组成的神经网络。
LeNet-5网络训练脚本是mnist_train.py,具体代码:
import os
import numpy as np
import tensorflow as tf
import time
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
from npu_bridge.estimator import npu_ops #导入NPU算子库
from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig #重写tensorFlow里的配置,针对NPU的配置
batch_size = 100
learning_rate = 0.1
training_step = 10000
model_save_path = "./model/"
model_name = "model.ckpt"
def train(mnist):
x = tf.placeholder(tf.float32, [batch_size, mnist_inference.image_size, mnist_inference.image_size, mnist_inference.num_channels], name = 'x-input')
y_ = tf.placeholder(tf.float32, [batch_size, mnist_inference.num_labels], name = "y-input")
regularizer = tf.contrib.layers.l2_regularizer(0.001)
y = mnist_inference.inference(x, train = True, regularizer = regularizer) #推理过程
global_step = tf.Variable(0, trainable=False)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = y, labels = tf.argmax(y_, 1)) #损失函数
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection("loss"))
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step = global_step) #优化器调用
saver = tf.train.Saver() #启动训练
#以下代码是NPU所必须的代码,开始配置参数
config = tf.ConfigProto(
allow_soft_placement = True,
log_device_placement = False)
custom_op = config.graph_options.rewrite_options.custom_optimizers.add()
custom_op.name = "NpuOptimizer"
custom_op.parameter_map["use_off_line"].b = True
#custom_op.parameter_map["profiling_mode"].b = True
#custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes("task_trace:training_trace")
config.graph_options.rewrite_options.remapping = RewriterConfig.OFF
#配置参数结束
writer = tf.summary.FileWriter("./log_dir", tf.get_default_graph())
writer.close()
#参数初始化
with tf.Session(config = config) as sess:
tf.global_variables_initializer().run()
start_time = time.time()
for i in range(training_step):
xs, ys = mnist.train.next_batch(batch_size)
reshaped_xs = np.reshape(xs, (batch_size, mnist_inference.image_size, mnist_inference.image_size, mnist_inference.num_channels))
_, loss_value, step = sess.run([train_step, loss, global_step], feed_dict={x:reshaped_xs, y_:ys})
#每训练10个epoch打印损失函数输出日志
if i % 10 == 0:
print("****************************++++++++++++++++++++++++++++++++*************************************\n" * 10)
print("After %d training steps, loss on training batch is %g, total time in this 1000 steps is %s." % (step, loss_value, time.time() - start_time))
#saver.save(sess, os.path.join(model_save_path, model_name), global_step = global_step)
print("****************************++++++++++++++++++++++++++++++++*************************************\n" * 10)
start_time = time.time()
def main():
mnist = input_data.read_data_sets('MNIST_DATA/', one_hot= True)
train(mnist)
if __name__ == "__main__":
main()
本文主要讲述了经典卷积神经网络之LeNet-5网络模型和迁移至昇腾D910的实现,希望大家快来动手操作一下试试看!
点击这里→了解更多精彩内容
序列特征的处理方法之二:基于卷积神经网络方法
昇腾AI处理器软件栈--神经网络软件架构
机器学习笔记(八)---- 神经网络
94页论文综述卷积神经网络:从基础技术到研究前景
卷积神经网络CNN原理详解(一)——基本原理(2)