本文总结Flink Table & SQL中的用户自定义函数: UDF、UDAF、UDTF。
UDF: 自定义标量函数(User Defined Scalar Function)。一行输入一行输出。
UDAF: 自定义聚合函数。多行输入一行输出。
UDTF: 自定义表函数。一行输入多行输出或一列输入多列输出。
// 某个用户在某个时刻浏览了某个商品,以及商品的价值
// eventTime: 北京时间,方便测试。如下,乱序数据:
{"userID": "user_5", "eventTime": "2019-12-01 10:02:00", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_4", "eventTime": "2019-12-01 10:02:02", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_5", "eventTime": "2019-12-01 10:02:06", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_4", "eventTime": "2019-12-01 10:02:10", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_5", "eventTime": "2019-12-01 10:02:06", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_5", "eventTime": "2019-12-01 10:02:06", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_4", "eventTime": "2019-12-01 10:02:12", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_5", "eventTime": "2019-12-01 10:02:06", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_5", "eventTime": "2019-12-01 10:02:06", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_4", "eventTime": "2019-12-01 10:02:15", "eventType": "browse", "productID": "product_5", "productPrice": 20}
{"userID": "user_4", "eventTime": "2019-12-01 10:02:16", "eventType": "browse", "productID": "product_5", "productPrice": 20}
UDF需要继承ScalarFunction
抽象类,主要实现eval方法。
自定义UDF,实现将Flink Window Start/End Timestamp类型时间转换为指定时区时间。
package com.bigdata.flink.tableSqlUDF.udf;
import com.alibaba.fastjson.JSON;
import com.bigdata.flink.beans.table.UserBrowseLog;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import java.sql.Timestamp;
import java.time.*;
import java.time.format.DateTimeFormatter;
import java.util.Properties;
/**
* Summary:
* UDF
*/
@Slf4j
public class Test {
public static void main(String[] args) throws Exception{
//args=new String[]{"--application","flink/src/main/java/com/bigdata/flink/tableSqlUDF/application.properties"};
//1、解析命令行参数
ParameterTool fromArgs = ParameterTool.fromArgs(args);
ParameterTool parameterTool = ParameterTool.fromPropertiesFile(fromArgs.getRequired("application"));
String kafkaBootstrapServers = parameterTool.getRequired("kafkaBootstrapServers");
String browseTopic = parameterTool.getRequired("browseTopic");
String browseTopicGroupID = parameterTool.getRequired("browseTopicGroupID");
//2、设置运行环境
EnvironmentSettings settings = EnvironmentSettings.newInstance().inStreamingMode().useBlinkPlanner().build();
StreamExecutionEnvironment streamEnv = StreamExecutionEnvironment.getExecutionEnvironment();
streamEnv.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(streamEnv, settings);
streamEnv.setParallelism(1);
//3、注册Kafka数据源
Properties browseProperties = new Properties();
browseProperties.put("bootstrap.servers",kafkaBootstrapServers);
browseProperties.put("group.id",browseTopicGroupID);
DataStream<UserBrowseLog> browseStream=streamEnv
.addSource(new FlinkKafkaConsumer010<>(browseTopic, new SimpleStringSchema(), browseProperties))
.process(new BrowseKafkaProcessFunction())
.assignTimestampsAndWatermarks(new BrowseBoundedOutOfOrdernessTimestampExtractor(Time.seconds(5)));
// 增加一个额外的字段rowtime为事件时间属性
tableEnv.registerDataStream("source_kafka",browseStream,"userID,eventTime,eventTimeTimestamp,eventType,productID,productPrice,rowtime.rowtime");
//4、注册UDF
//日期转换函数: 将Flink Window Start/End Timestamp转换为指定时区时间(默认转换为北京时间)
tableEnv.registerFunction("UDFTimestampConverter", new UDFTimestampConverter());
//5、运行SQL
//基于事件时间,maxOutOfOrderness为5秒,滚动窗口,计算10秒内每个商品被浏览的PV
String sql = ""
+ " select "
+ " UDFTimestampConverter(TUMBLE_START(rowtime, INTERVAL '10' SECOND),'YYYY-MM-dd HH:mm:ss') as window_start, "
+ " UDFTimestampConverter(TUMBLE_END(rowtime, INTERVAL '10' SECOND),'YYYY-MM-dd HH:mm:ss','+08:00') as window_end, "
+ " productID, "
+ " count(1) as browsePV"
+ " from source_kafka "
+ " group by productID,TUMBLE(rowtime, INTERVAL '10' SECOND)";
Table table = tableEnv.sqlQuery(sql);
tableEnv.toAppendStream(table,Row.class).print();
//6、开始执行
tableEnv.execute(Test.class.getSimpleName());
}
/**
* 自定义UDF
*/
public static class UDFTimestampConverter extends ScalarFunction{
/**
* 默认转换为北京时间
* @param timestamp Flink Timestamp 格式时间
* @param format 目标格式,如"YYYY-MM-dd HH:mm:ss"
* @return 目标时区的时间
*/
public String eval(Timestamp timestamp,String format){
LocalDateTime noZoneDateTime = timestamp.toLocalDateTime();
ZonedDateTime utcZoneDateTime = ZonedDateTime.of(noZoneDateTime, ZoneId.of("UTC"));
ZonedDateTime targetZoneDateTime = utcZoneDateTime.withZoneSameInstant(ZoneId.of("+08:00"));
return targetZoneDateTime.format(DateTimeFormatter.ofPattern(format));
}
/**
* 转换为指定时区时间
* @param timestamp Flink Timestamp 格式时间
* @param format 目标格式,如"YYYY-MM-dd HH:mm:ss"
* @param zoneOffset 目标时区偏移量
* @return 目标时区的时间
*/
public String eval(Timestamp timestamp,String format,String zoneOffset){
LocalDateTime noZoneDateTime = timestamp.toLocalDateTime();
ZonedDateTime utcZoneDateTime = ZonedDateTime.of(noZoneDateTime, ZoneId.of("UTC"));
ZonedDateTime targetZoneDateTime = utcZoneDateTime.withZoneSameInstant(ZoneId.of(zoneOffset));
return targetZoneDateTime.format(DateTimeFormatter.ofPattern(format));
}
}
/**
* 解析Kafka数据
*/
static class BrowseKafkaProcessFunction extends ProcessFunction<String, UserBrowseLog> {
@Override
public void processElement(String value, Context ctx, Collector<UserBrowseLog> out) throws Exception {
try {
UserBrowseLog log = JSON.parseObject(value, UserBrowseLog.class);
// 增加一个long类型的时间戳
// 指定eventTime为yyyy-MM-dd HH:mm:ss格式的北京时间
DateTimeFormatter format = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
OffsetDateTime eventTime = LocalDateTime.parse(log.getEventTime(), format).atOffset(ZoneOffset.of("+08:00"));
// 转换成毫秒时间戳
long eventTimeTimestamp = eventTime.toInstant().toEpochMilli();
log.setEventTimeTimestamp(eventTimeTimestamp);
out.collect(log);
}catch (Exception ex){
log.error("解析Kafka数据异常...",ex);
}
}
}
/**
* 提取时间戳生成水印
*/
static class BrowseBoundedOutOfOrdernessTimestampExtractor extends BoundedOutOfOrdernessTimestampExtractor<UserBrowseLog> {
BrowseBoundedOutOfOrdernessTimestampExtractor(Time maxOutOfOrderness) {
super(maxOutOfOrderness);
}
@Override
public long extractTimestamp(UserBrowseLog element) {
return element.getEventTimeTimestamp();
}
}
}
2019-12-01 10:02:00,2019-12-01 10:02:10,product_5,7
UDAF,自定义聚合函数,需要继承AggregateFunction
抽象类,实现一系列方法。AggregateFunction
抽象类如下:
abstract class AggregateFunction<T, ACC> extends UserDefinedAggregateFunction<T, ACC>
T: UDAF输出的结果类型
ACC: UDAF存放中间结果的类型
最基本的UDAF至少需要实现如下三个方法:
createAccumulator
: UDAF是聚合操作,需要定义一个存放中间结果的数据结构(即Accumulator)。一般,在这里,初始化时,定义这个Accumulator
accumulate
: 定义如何根据输入更新Accumulator
getValue
: 定义如何返回Accumulator中存储的中间结果作为UDAF的最终结果
除了三个基本方法外,在一些特殊的场景,可能还需要以下三个方法:
retract
: 和accumulate操作相反,定义如何Restract,即减少Accumulator中的值
merge
: 定义如何merge多个Accumulator
resetAccumulator
: 定义如何重置Accumulator
package com.bigdata.flink.tableSqlUDF.udaf;
import com.alibaba.fastjson.JSON;
import com.bigdata.flink.beans.table.UserBrowseLog;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.functions.AggregateFunction;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import java.sql.Timestamp;
import java.time.*;
import java.time.format.DateTimeFormatter;
import java.util.Properties;
/**
* Summary:
* UDAF
*/
@Slf4j
public class Test {
public static void main(String[] args) throws Exception{
//args=new String[]{"--application","flink/src/main/java/com/bigdata/flink/tableSqlUDF/application.properties"};
//1、解析命令行参数
ParameterTool fromArgs = ParameterTool.fromArgs(args);
ParameterTool parameterTool = ParameterTool.fromPropertiesFile(fromArgs.getRequired("application"));
String kafkaBootstrapServers = parameterTool.getRequired("kafkaBootstrapServers");
String browseTopic = parameterTool.getRequired("browseTopic");
String browseTopicGroupID = parameterTool.getRequired("browseTopicGroupID");
//2、设置运行环境
EnvironmentSettings settings = EnvironmentSettings.newInstance().inStreamingMode().useBlinkPlanner().build();
StreamExecutionEnvironment streamEnv = StreamExecutionEnvironment.getExecutionEnvironment();
streamEnv.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(streamEnv, settings);
streamEnv.setParallelism(1);
//3、注册Kafka数据源
Properties browseProperties = new Properties();
browseProperties.put("bootstrap.servers",kafkaBootstrapServers);
browseProperties.put("group.id",browseTopicGroupID);
DataStream<UserBrowseLog> browseStream=streamEnv
.addSource(new FlinkKafkaConsumer010<>(browseTopic, new SimpleStringSchema(), browseProperties))
.process(new BrowseKafkaProcessFunction())
.assignTimestampsAndWatermarks(new BrowseBoundedOutOfOrdernessTimestampExtractor(Time.seconds(5)));
// 增加一个额外的字段rowtime为事件时间属性
tableEnv.registerDataStream("source_kafka",browseStream,"userID,eventTime,eventTimeTimestamp,eventType,productID,productPrice,rowtime.rowtime");
//4、注册自定义函数
//UDF: 时间转换
tableEnv.registerFunction("UDFTimestampConverter", new UDFTimestampConverter());
//UDAF: 求Sum
tableEnv.registerFunction("UDAFSum", new UDAFSum());
//5、运行SQL
//基于事件时间,maxOutOfOrderness为5秒,滚动窗口,计算10秒内每个商品被浏览的总价值
String sql = ""
+ " select "
+ " UDFTimestampConverter(TUMBLE_START(rowtime, INTERVAL '10' SECOND),'YYYY-MM-dd HH:mm:ss') as window_start, "
+ " UDFTimestampConverter(TUMBLE_END(rowtime, INTERVAL '10' SECOND),'YYYY-MM-dd HH:mm:ss','+08:00') as window_end, "
+ " productID, "
+ " UDAFSum(productPrice) as sumPrice"
+ " from source_kafka "
+ " group by productID,TUMBLE(rowtime, INTERVAL '10' SECOND)";
Table table = tableEnv.sqlQuery(sql);
tableEnv.toAppendStream(table,Row.class).print();
//6、开始执行
tableEnv.execute(Test.class.getSimpleName());
}
/**
* 自定义UDF
*/
public static class UDFTimestampConverter extends ScalarFunction{
/**
* 默认转换为北京时间
* @param timestamp Flink Timestamp 格式时间
* @param format 目标格式,如"YYYY-MM-dd HH:mm:ss"
* @return 目标时区的时间
*/
public String eval(Timestamp timestamp,String format){
LocalDateTime noZoneDateTime = timestamp.toLocalDateTime();
ZonedDateTime utcZoneDateTime = ZonedDateTime.of(noZoneDateTime, ZoneId.of("UTC"));
ZonedDateTime targetZoneDateTime = utcZoneDateTime.withZoneSameInstant(ZoneId.of("+08:00"));
return targetZoneDateTime.format(DateTimeFormatter.ofPattern(format));
}
/**
* 转换为指定时区时间
* @param timestamp Flink Timestamp 格式时间
* @param format 目标格式,如"YYYY-MM-dd HH:mm:ss"
* @param zoneOffset 目标时区偏移量
* @return 目标时区的时间
*/
public String eval(Timestamp timestamp,String format,String zoneOffset){
LocalDateTime noZoneDateTime = timestamp.toLocalDateTime();
ZonedDateTime utcZoneDateTime = ZonedDateTime.of(noZoneDateTime, ZoneId.of("UTC"));
ZonedDateTime targetZoneDateTime = utcZoneDateTime.withZoneSameInstant(ZoneId.of(zoneOffset));
return targetZoneDateTime.format(DateTimeFormatter.ofPattern(format));
}
}
/**
* 自定义UDAF
*/
public static class UDAFSum extends AggregateFunction<Long, UDAFSum.SumAccumulator>{
/**
* 定义一个Accumulator,存放聚合的中间结果
*/
public static class SumAccumulator{
public long sumPrice;
}
/**
* 初始化Accumulator
* @return
*/
@Override
public SumAccumulator createAccumulator() {
SumAccumulator sumAccumulator = new SumAccumulator();
sumAccumulator.sumPrice=0;
return sumAccumulator;
}
/**
* 定义如何根据输入更新Accumulator
* @param accumulator Accumulator
* @param productPrice 输入
*/
public void accumulate(SumAccumulator accumulator,int productPrice){
accumulator.sumPrice += productPrice;
}
/**
* 返回聚合的最终结果
* @param accumulator Accumulator
* @return
*/
@Override
public Long getValue(SumAccumulator accumulator) {
return accumulator.sumPrice;
}
}
/**
* 解析Kafka数据
*/
static class BrowseKafkaProcessFunction extends ProcessFunction<String, UserBrowseLog> {
@Override
public void processElement(String value, Context ctx, Collector<UserBrowseLog> out) throws Exception {
try {
UserBrowseLog log = JSON.parseObject(value, UserBrowseLog.class);
// 增加一个long类型的时间戳
// 指定eventTime为yyyy-MM-dd HH:mm:ss格式的北京时间
DateTimeFormatter format = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
OffsetDateTime eventTime = LocalDateTime.parse(log.getEventTime(), format).atOffset(ZoneOffset.of("+08:00"));
// 转换成毫秒时间戳
long eventTimeTimestamp = eventTime.toInstant().toEpochMilli();
log.setEventTimeTimestamp(eventTimeTimestamp);
out.collect(log);
}catch (Exception ex){
log.error("解析Kafka数据异常...",ex);
}
}
}
/**
* 提取时间戳生成水印
*/
static class BrowseBoundedOutOfOrdernessTimestampExtractor extends BoundedOutOfOrdernessTimestampExtractor<UserBrowseLog> {
BrowseBoundedOutOfOrdernessTimestampExtractor(Time maxOutOfOrderness) {
super(maxOutOfOrderness);
}
@Override
public long extractTimestamp(UserBrowseLog element) {
return element.getEventTimeTimestamp();
}
}
}
2019-12-01 10:02:00,2019-12-01 10:02:10,product_5,140
UDTF,自定义表函数,继承TableFunction
抽象类,主要实现eval
方法。TableFunction
抽象类如下:
abstract class TableFunction<T> extends UserDefinedFunction
T: 输出的数据类型
注意:
如果需要UDTF返回多列,只需要将返回值类型声明为Row
或Tuple
即可。若返回Row,需要重写getResultType
方法,显示声明返回的Row的字段类型。如下,示例。
在使用UDTF时,需要带上LATERAL
和TABLE
两个关键字。
UDTF支持CROSS JOIN和LEFT JOIN。
CROSS JOIN
: 对于左侧表的每一行,右侧UDTF不输出,则这一行不输出。
LEFT JOIN
: 对于左侧表的每一行,右侧UDTF不输出,则这一行会输出,右侧UDTF字段为Null。
package com.bigdata.flink.tableSqlUDF.udtf;
import com.alibaba.fastjson.JSON;
import com.bigdata.flink.beans.table.UserBrowseLog;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.functions.AggregateFunction;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import java.sql.Timestamp;
import java.time.*;
import java.time.format.DateTimeFormatter;
import java.util.Properties;
/**
* Summary:
* UDTF
*/
@Slf4j
public class Test {
public static void main(String[] args) throws Exception{
//args=new String[]{"--application","flink/src/main/java/com/bigdata/flink/tableSqlUDF/application.properties"};
//1、解析命令行参数
ParameterTool fromArgs = ParameterTool.fromArgs(args);
ParameterTool parameterTool = ParameterTool.fromPropertiesFile(fromArgs.getRequired("application"));
String kafkaBootstrapServers = parameterTool.getRequired("kafkaBootstrapServers");
String browseTopic = parameterTool.getRequired("browseTopic");
String browseTopicGroupID = parameterTool.getRequired("browseTopicGroupID");
//2、设置运行环境
EnvironmentSettings settings = EnvironmentSettings.newInstance().inStreamingMode().useBlinkPlanner().build();
StreamExecutionEnvironment streamEnv = StreamExecutionEnvironment.getExecutionEnvironment();
streamEnv.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(streamEnv, settings);
streamEnv.setParallelism(1);
//3、注册Kafka数据源
Properties browseProperties = new Properties();
browseProperties.put("bootstrap.servers",kafkaBootstrapServers);
browseProperties.put("group.id",browseTopicGroupID);
DataStream<UserBrowseLog> browseStream=streamEnv
.addSource(new FlinkKafkaConsumer010<>(browseTopic, new SimpleStringSchema(), browseProperties))
.process(new BrowseKafkaProcessFunction())
.assignTimestampsAndWatermarks(new BrowseBoundedOutOfOrdernessTimestampExtractor(Time.seconds(5)));
// 增加一个额外的字段rowtime为事件时间属性
tableEnv.registerDataStream("source_kafka",browseStream,"userID,eventTime,eventTimeTimestamp,eventType,productID,productPrice,rowtime.rowtime");
//4、注册自定义函数
tableEnv.registerFunction("UDTFOneColumnToMultiColumn",new UDTFOneColumnToMultiColumn());
//5、运行SQL
String sql = ""
+ "select "
+ " userID,eventTime,eventTimeTimestamp,eventType,productID,productPrice,rowtime,date1,time1 "
+ "from source_kafka ,"
+ "lateral table(UDTFOneColumnToMultiColumn(eventTime)) as T(date1,time1)";
Table table = tableEnv.sqlQuery(sql);
tableEnv.toAppendStream(table,Row.class).print();
//6、开始执行
tableEnv.execute(Test.class.getSimpleName());
}
/**
* 自定义UDTF
* 将一列变成两列。
* 如:2019-12-01 10:02:06 转换成date1(2019-12-01)和time1(10:02:06)两列。
*/
public static class UDTFOneColumnToMultiColumn extends TableFunction<Row>{
public void eval(String value) {
String[] valueSplits = value.split(" ");
//一行,两列
Row row = new Row(2);
row.setField(0,valueSplits[0]);
row.setField(1,valueSplits[1]);
collect(row);
}
@Override
public TypeInformation<Row> getResultType() {
return new RowTypeInfo(Types.STRING,Types.STRING);
}
}
/**
* 解析Kafka数据
*/
static class BrowseKafkaProcessFunction extends ProcessFunction<String, UserBrowseLog> {
@Override
public void processElement(String value, Context ctx, Collector<UserBrowseLog> out) throws Exception {
try {
UserBrowseLog log = JSON.parseObject(value, UserBrowseLog.class);
// 增加一个long类型的时间戳
// 指定eventTime为yyyy-MM-dd HH:mm:ss格式的北京时间
DateTimeFormatter format = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
OffsetDateTime eventTime = LocalDateTime.parse(log.getEventTime(), format).atOffset(ZoneOffset.of("+08:00"));
// 转换成毫秒时间戳
long eventTimeTimestamp = eventTime.toInstant().toEpochMilli();
log.setEventTimeTimestamp(eventTimeTimestamp);
out.collect(log);
}catch (Exception ex){
log.error("解析Kafka数据异常...",ex);
}
}
}
/**
* 提取时间戳生成水印
*/
static class BrowseBoundedOutOfOrdernessTimestampExtractor extends BoundedOutOfOrdernessTimestampExtractor<UserBrowseLog> {
BrowseBoundedOutOfOrdernessTimestampExtractor(Time maxOutOfOrderness) {
super(maxOutOfOrderness);
}
@Override
public long extractTimestamp(UserBrowseLog element) {
return element.getEventTimeTimestamp();
}
}
}
// 最后两列是用UDTF从第二列中解析出来
user_5,2019-12-01 10:02:06,1575165726000,browse,product_5,20,2019-12-01T02:02:06,2019-12-01,10:02:06
user_5,2019-12-01 10:02:06,1575165726000,browse,product_5,20,2019-12-01T02:02:06,2019-12-01,10:02:06
user_5,2019-12-01 10:02:06,1575165726000,browse,product_5,20,2019-12-01T02:02:06,2019-12-01,10:02:06
user_5,2019-12-01 10:02:00,1575165720000,browse,product_5,20,2019-12-01T02:02:00,2019-12-01,10:02:00
user_4,2019-12-01 10:02:10,1575165730000,browse,product_5,20,2019-12-01T02:02:10,2019-12-01,10:02:10
user_4,2019-12-01 10:02:12,1575165732000,browse,product_5,20,2019-12-01T02:02:12,2019-12-01,10:02:12
user_4,2019-12-01 10:02:15,1575165735000,browse,product_5,20,2019-12-01T02:02:15,2019-12-01,10:02:15
user_4,2019-12-01 10:02:02,1575165722000,browse,product_5,20,2019-12-01T02:02:02,2019-12-01,10:02:02
user_5,2019-12-01 10:02:06,1575165726000,browse,product_5,20,2019-12-01T02:02:06,2019-12-01,10:02:06
user_5,2019-12-01 10:02:06,1575165726000,browse,product_5,20,2019-12-01T02:02:06,2019-12-01,10:02:06
user_4,2019-12-01 10:02:16,1575165736000,browse,product_5,20,2019-12-01T02:02:16,2019-12-01,10:02:16