VINS-FUSION代码超详细注释(VIO部分)/VIO入门(4)

文章目录

  • 0 前情回顾
    • 本次工作
  • 1 updateLatestStates() 和slideWindow()
  • 2 optimization()

0 前情回顾

VINS-FUSION代码超详细注释(VIO部分)/VIO入门(1)讲到了主程序rosNodeTest.cpp。在程序最后,会进入sync_process线程进行处理。本篇博客接着进行讲解。
VINS-FUSION代码超详细注释(VIO部分)/VIO入门(2)中,讲了sync_process,以及其中的trackImageprocessMeasurements,包括processMeasurements中对IMU数据的处理部分.
VINS-FUSION代码超详细注释(VIO部分)/VIO入门(3)中,讲了processImage,其中就包含了初始化,三角化,非线性优化,划窗等等内容.
本文主要对函数optimization() updateLatestStates() slideWindow()进行介绍.

本次工作

我首先一步步的把代码全部注释了,十分的详细,对于C++和OpenCV的一些操作也进行了详细的注释,对于刚入门的同学应该还是有帮助的。之后我将代码开源,并写了相应的博客进行讲解。

开源程序:

https://github.com/kuankuan-yue/VINS-FUSION-leanrning.git

相应博客:

VINS-FUSION代码超详细注释(VIO部分)/VIO入门(1)
VINS-FUSION代码超详细注释(VIO部分)/VIO入门(2)
VINS-FUSION代码超详细注释(VIO部分)/VIO入门(3)
VINS-FUSION代码超详细注释(VIO部分)/VIO入门(4)

1 updateLatestStates() 和slideWindow()

这两个函数比较简单

// 让此时刻的值都等于上一时刻的值,用来更新状态
void Estimator::updateLatestStates()

// 滑动窗口法
void Estimator::slideWindow()
// 道理很简单,就是把前后元素交换

2 optimization()

这个函数可以说是整个VIO的精华和难点所在!
因为内容太多了,所以直接贴了代码.对于其中某些函数,如果大家有什么问题的话,可以去github上参考我的代码.

// 基于滑动窗口的紧耦合的非线性优化,残差项的构造和求解
void Estimator::optimization()
{
    TicToc t_whole, t_prepare;
    vector2double();

    //------------------ 定义问题 定义本地参数化,并添加优化参数-------------------------------------------------
    ceres::Problem problem;// 定义ceres的优化问题
    ceres::LossFunction *loss_function;//核函数
    //loss_function = NULL;
    loss_function = new ceres::HuberLoss(1.0);//HuberLoss当预测偏差小于 δ 时,它采用平方误差,当预测偏差大于 δ 时,采用的线性误差。
    //loss_function = new ceres::CauchyLoss(1.0 / FOCAL_LENGTH);
    //ceres::LossFunction* loss_function = new ceres::HuberLoss(1.0);

    for (int i = 0; i < frame_count + 1; i++)
    {
        // 对于四元数或者旋转矩阵这种使用过参数化表示旋转的方式,它们是不支持广义的加法
        // 所以我们在使用ceres对其进行迭代更新的时候就需要自定义其更新方式了,具体的做法是实现一个LocalParameterization
        ceres::LocalParameterization *local_parameterization = new PoseLocalParameterization();

        // AddParameterBlock   向该问题添加具有适当大小和参数化的参数块。
        problem.AddParameterBlock(para_Pose[i], SIZE_POSE, local_parameterization); //因为有四元数,所以使用了 local_parameterization
        if(USE_IMU)
            problem.AddParameterBlock(para_SpeedBias[i], SIZE_SPEEDBIAS);//使用默认的加法
    }

    // 没使用imu时,将窗口内第一帧的位姿固定
    if(!USE_IMU)
        // SetParameterBlockConstant 在优化过程中,使指示的参数块保持恒定。设置任何参数块变成一个常量
        // 固定第一帧的位姿不变!  这里涉及到论文2中的
        problem.SetParameterBlockConstant(para_Pose[0]);


    for (int i = 0; i < NUM_OF_CAM; i++)
    {
        ceres::LocalParameterization *local_parameterization = new PoseLocalParameterization();
        problem.AddParameterBlock(para_Ex_Pose[i], SIZE_POSE, local_parameterization);//如果是双目,估计两个相机的位姿

        if ((ESTIMATE_EXTRINSIC && frame_count == WINDOW_SIZE && Vs[0].norm() > 0.2) || openExEstimation)
        //Vs[0].norm() > 0.2窗口内第一个速度>2?
        {
            //ROS_INFO("estimate extinsic param");
            openExEstimation = 1;//打开外部估计
        }
        else//如果不需要估计,则把估计器中的外部参数设为定值
        {
            //ROS_INFO("fix extinsic param");
            problem.SetParameterBlockConstant(para_Ex_Pose[i]);
        }
    }

    problem.AddParameterBlock(para_Td[0], 1);//把时间也作为待优化变量
    if (!ESTIMATE_TD || Vs[0].norm() < 0.2)//如果不估计时间就固定
        problem.SetParameterBlockConstant(para_Td[0]);

    // ------------------------在问题中添加约束,也就是构造残差函数---------------------------------- 
    // 在问题中添加先验信息作为约束
    if (last_marginalization_info && last_marginalization_info->valid)
    {
        // 构造新的marginisation_factor construct new marginlization_factor
        MarginalizationFactor *marginalization_factor = new MarginalizationFactor(last_marginalization_info);

        /* 通过提供参数块的向量来添加残差块。
        ResidualBlockId AddResidualBlock(
            CostFunction* cost_function,//损失函数
            LossFunction* loss_function,//核函数
            const std::vector& parameter_blocks); */
        problem.AddResidualBlock(marginalization_factor, NULL,
                                 last_marginalization_parameter_blocks);
    }

    // 在问题中添加IMU约束
    if(USE_IMU)
    {
        for (int i = 0; i < frame_count; i++)
        {
            int j = i + 1;
            if (pre_integrations[j]->sum_dt > 10.0)
                continue;
            IMUFactor* imu_factor = new IMUFactor(pre_integrations[j]);
            problem.AddResidualBlock(imu_factor, NULL, para_Pose[i], para_SpeedBias[i], para_Pose[j], para_SpeedBias[j]);
                //这里添加的参数包括状态i和状态j
        }
    }

    int f_m_cnt = 0; //每个特征点,观测到它的相机的计数 visual measurement count
    int feature_index = -1;
    for (auto &it_per_id : f_manager.feature)
    {
        it_per_id.used_num = it_per_id.feature_per_frame.size();
        if (it_per_id.used_num < 4)
            continue;
 
        ++feature_index;

        // imu_i该特征点第一次被观测到的帧 ,imu_j = imu_i - 1
        int imu_i = it_per_id.start_frame, imu_j = imu_i - 1;
        
        Vector3d pts_i = it_per_id.feature_per_frame[0].point;

        for (auto &it_per_frame : it_per_id.feature_per_frame)
        {
            imu_j++;
            if (imu_i != imu_j)//既,本次不是第一次观测到
            {
                Vector3d pts_j = it_per_frame.point;
                ProjectionTwoFrameOneCamFactor *f_td = new ProjectionTwoFrameOneCamFactor(pts_i, pts_j, it_per_id.feature_per_frame[0].velocity, it_per_frame.velocity,
                    it_per_id.feature_per_frame[0].cur_td, it_per_frame.cur_td);
                problem.AddResidualBlock(f_td, loss_function, para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Feature[feature_index], para_Td[0]);
                    /* 相关介绍:
                    1 只在视觉量测中用了核函数loss_function 用的是huber
                    2 参数包含了para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Feature[feature_index], para_Td[0]
                    3 ProjectionTwoFrameOneCamFactor这个重投影并不是很懂 */
            }

            // 如果是双目的
            if(STEREO && it_per_frame.is_stereo)
            {                
                Vector3d pts_j_right = it_per_frame.pointRight;
                if(imu_i != imu_j) //既,本次不是第一次观测到
                {
                    ProjectionTwoFrameTwoCamFactor *f = new ProjectionTwoFrameTwoCamFactor(pts_i, pts_j_right, it_per_id.feature_per_frame[0].velocity, it_per_frame.velocityRight,
                        it_per_id.feature_per_frame[0].cur_td, it_per_frame.cur_td);
                    problem.AddResidualBlock(f, loss_function, para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Ex_Pose[1], para_Feature[feature_index], para_Td[0]);
                }
                else//既,本次是第一次观测到
                {
                    ProjectionOneFrameTwoCamFactor *f = new ProjectionOneFrameTwoCamFactor(pts_i, pts_j_right, it_per_id.feature_per_frame[0].velocity, it_per_frame.velocityRight,
                        it_per_id.feature_per_frame[0].cur_td, it_per_frame.cur_td);
                    problem.AddResidualBlock(f, loss_function, para_Ex_Pose[0], para_Ex_Pose[1], para_Feature[feature_index], para_Td[0]);
                }
               
            }
            f_m_cnt++;
        }
    }

    ROS_DEBUG("visual measurement count: %d", f_m_cnt);
    //printf("prepare for ceres: %f \n", t_prepare.toc());

    // ------------------------------------写下来配置优化选项,并进行求解-----------------------------------------
    ceres::Solver::Options options;
    options.linear_solver_type = ceres::DENSE_SCHUR;
    //options.num_threads = 2;
    options.trust_region_strategy_type = ceres::DOGLEG;
    options.max_num_iterations = NUM_ITERATIONS;
    //options.use_explicit_schur_complement = true;
    //options.minimizer_progress_to_stdout = true;
    //options.use_nonmonotonic_steps = true;

    if (marginalization_flag == MARGIN_OLD)
        options.max_solver_time_in_seconds = SOLVER_TIME * 4.0 / 5.0;
    else
        options.max_solver_time_in_seconds = SOLVER_TIME;
    TicToc t_solver;
    ceres::Solver::Summary summary;//优化信息
    ceres::Solve(options, &problem, &summary);
    //cout << summary.BriefReport() << endl;
    ROS_DEBUG("Iterations : %d", static_cast<int>(summary.iterations.size()));
    //printf("solver costs: %f \n", t_solver.toc());

    double2vector();
    //printf("frame_count: %d \n", frame_count);

    if(frame_count < WINDOW_SIZE)
        return;

    // -----------------------------marginalization------------------------------------
    TicToc t_whole_marginalization;

    //如果需要marg掉最老的一帧
    if (marginalization_flag == MARGIN_OLD)
    {
        MarginalizationInfo *marginalization_info = new MarginalizationInfo();//先验信息
        vector2double();

        if (last_marginalization_info && last_marginalization_info->valid)
        {
            vector<int> drop_set;//边缘话的优化变量的位置_drop_set
            for (int i = 0; i < static_cast<int>(last_marginalization_parameter_blocks.size()); i++)
            //last_marginalization_parameter_blocks 是上一轮留下来的残差块
            {
                if (last_marginalization_parameter_blocks[i] == para_Pose[0] ||
                    last_marginalization_parameter_blocks[i] == para_SpeedBias[0])
                        //需要marg掉的优化变量,也就是滑窗内第一个变量,para_Pose[0]和para_SpeedBias[0]
                    drop_set.push_back(i);
            }
            // 创建新的marg因子 construct new marginlization_factor
            MarginalizationFactor *marginalization_factor = new MarginalizationFactor(last_marginalization_info);
             
            /* 是为了将不同的损失函数_cost_function以及优化变量_parameter_blocks统一起来再一起添加到marginalization_info中
            ResidualBlockInfo(ceres::CostFunction *_cost_function, 
                            ceres::LossFunction *_loss_function, 
                            std::vector _parameter_blocks, 
                            std::vector _drop_set) */
            ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(marginalization_factor, NULL,
                last_marginalization_parameter_blocks,
                drop_set);//这一步添加了marg信息
            
            // 将上一步marginalization后的信息作为先验信息
            marginalization_info->addResidualBlockInfo(residual_block_info);
        }

        // 添加IMU的marg信息
        // 然后添加第0帧和第1帧之间的IMU预积分值以及第0帧和第1帧相关优化变量
        if(USE_IMU)
        {
            if (pre_integrations[1]->sum_dt < 10.0)
            {
                IMUFactor* imu_factor = new IMUFactor(pre_integrations[1]);

                // 这一步添加IMU的marg信息
                ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(imu_factor, NULL,
                    vector<double *>{para_Pose[0], para_SpeedBias[0], para_Pose[1], para_SpeedBias[1]},//优化变量
                    vector<int>{0, 1});//这里是0,1的原因是0和1是para_Pose[0], para_SpeedBias[0]是需要marg的变量
                marginalization_info->addResidualBlockInfo(residual_block_info);
            }
        }

        // 添加视觉的maeg信息
        {
            int feature_index = -1;

            //这里是遍历滑窗所有的特征点
            for (auto &it_per_id : f_manager.feature)
            {
                it_per_id.used_num = it_per_id.feature_per_frame.size();
                if (it_per_id.used_num < 4)
                    continue;

                ++feature_index;

                int imu_i = it_per_id.start_frame, imu_j = imu_i - 1;//这里是从特征点的第一个观察帧开始
                if (imu_i != 0)//如果第一个观察帧不是第一帧就不进行考虑,因此后面用来构建marg矩阵的都是和第一帧有共视关系的滑窗帧
                    continue;

                Vector3d pts_i = it_per_id.feature_per_frame[0].point;

                for (auto &it_per_frame : it_per_id.feature_per_frame)
                {
                    imu_j++;
                    if(imu_i != imu_j)
                    {
                        Vector3d pts_j = it_per_frame.point;
                        ProjectionTwoFrameOneCamFactor *f_td = new ProjectionTwoFrameOneCamFactor(pts_i, pts_j, it_per_id.feature_per_frame[0].velocity, it_per_frame.velocity,
                            it_per_id.feature_per_frame[0].cur_td, it_per_frame.cur_td);
                        ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(f_td, loss_function,
                            vector<double *>{para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Feature[feature_index], para_Td[0]},//优化变量
                            vector<int>{0, 3});
                        marginalization_info->addResidualBlockInfo(residual_block_info);
                    }
                    if(STEREO && it_per_frame.is_stereo)
                    {
                        Vector3d pts_j_right = it_per_frame.pointRight;
                        if(imu_i != imu_j)
                        {
                            ProjectionTwoFrameTwoCamFactor *f = new ProjectionTwoFrameTwoCamFactor(pts_i, pts_j_right, it_per_id.feature_per_frame[0].velocity, it_per_frame.velocityRight,
                                it_per_id.feature_per_frame[0].cur_td, it_per_frame.cur_td);
                            ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(f, loss_function,
                                vector<double *>{para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Ex_Pose[1], para_Feature[feature_index], para_Td[0]},//优化变量
                                vector<int>{0, 4});//为0和3的原因是,para_Pose[imu_i]是第一帧的位姿,需要marg掉,而3是para_Feature[feature_index]是和第一帧相关的特征点,需要marg掉 
                            marginalization_info->addResidualBlockInfo(residual_block_info);
                        }
                        else
                        {
                            ProjectionOneFrameTwoCamFactor *f = new ProjectionOneFrameTwoCamFactor(pts_i, pts_j_right, it_per_id.feature_per_frame[0].velocity, it_per_frame.velocityRight,
                                                                          it_per_id.feature_per_frame[0].cur_td, it_per_frame.cur_td);
                            ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(f, loss_function,
                                                                                           vector<double *>{para_Ex_Pose[0], para_Ex_Pose[1], para_Feature[feature_index], para_Td[0]},
                                                                                           vector<int>{2});
                            marginalization_info->addResidualBlockInfo(residual_block_info);
                        }
                    }
                }
            }
        }

        TicToc t_pre_margin;

        // 上面通过调用 addResidualBlockInfo() 已经确定优化变量的数量、存储位置、长度以及待优化变量的数量以及存储位置,
        //-------------------------- 下面就需要调用 preMarginalize() 进行预处理
        marginalization_info->preMarginalize();
        ROS_DEBUG("pre marginalization %f ms", t_pre_margin.toc());
        

        //------------------------调用 marginalize 正式开始边缘化
        TicToc t_margin;
        marginalization_info->marginalize();
        ROS_DEBUG("marginalization %f ms", t_margin.toc());

        //------------------------在optimization的最后会有一部滑窗预移动的操作
        // 值得注意的是,这里仅仅是相当于将指针进行了一次移动,指针对应的数据还是旧数据,因此需要结合后面调用的 slideWindow() 函数才能实现真正的滑窗移动
        std::unordered_map<long, double *> addr_shift;
        for (int i = 1; i <= WINDOW_SIZE; i++)//从1开始,因为第一帧的状态不要了
        {
            //这一步的操作指的是第i的位置存放的的是i-1的内容,这就意味着窗口向前移动了一格
            addr_shift[reinterpret_cast<long>(para_Pose[i])] = para_Pose[i - 1];//因此para_Pose这些变量都是双指针变量,因此这一步是指针操作
            if(USE_IMU)
                addr_shift[reinterpret_cast<long>(para_SpeedBias[i])] = para_SpeedBias[i - 1];
        }
        for (int i = 0; i < NUM_OF_CAM; i++)
            addr_shift[reinterpret_cast<long>(para_Ex_Pose[i])] = para_Ex_Pose[i];

        addr_shift[reinterpret_cast<long>(para_Td[0])] = para_Td[0];

        vector<double *> parameter_blocks = marginalization_info->getParameterBlocks(addr_shift);

        if (last_marginalization_info)
            delete last_marginalization_info;//删除掉上一次的marg相关的内容
        last_marginalization_info = marginalization_info;//marg相关内容的递归
        last_marginalization_parameter_blocks = parameter_blocks;//优化变量的递归,这里面仅仅是指针
        
    }
    else
    {
        if (last_marginalization_info &&
            std::count(std::begin(last_marginalization_parameter_blocks), std::end(last_marginalization_parameter_blocks), para_Pose[WINDOW_SIZE - 1]))
        {

            MarginalizationInfo *marginalization_info = new MarginalizationInfo();
            vector2double();
            if (last_marginalization_info && last_marginalization_info->valid)
            {
                vector<int> drop_set;
                for (int i = 0; i < static_cast<int>(last_marginalization_parameter_blocks.size()); i++)
                {
                    ROS_ASSERT(last_marginalization_parameter_blocks[i] != para_SpeedBias[WINDOW_SIZE - 1]);
                    if (last_marginalization_parameter_blocks[i] == para_Pose[WINDOW_SIZE - 1])
                        drop_set.push_back(i);
                }
                // construct new marginlization_factor
                MarginalizationFactor *marginalization_factor = new MarginalizationFactor(last_marginalization_info);
                ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(marginalization_factor, NULL,
                                                                               last_marginalization_parameter_blocks,
                                                                               drop_set);

                marginalization_info->addResidualBlockInfo(residual_block_info);
            }

            TicToc t_pre_margin;
            ROS_DEBUG("begin marginalization");
            marginalization_info->preMarginalize();
            ROS_DEBUG("end pre marginalization, %f ms", t_pre_margin.toc());

            TicToc t_margin;
            ROS_DEBUG("begin marginalization");
            marginalization_info->marginalize();
            ROS_DEBUG("end marginalization, %f ms", t_margin.toc());
            
            std::unordered_map<long, double *> addr_shift;
            for (int i = 0; i <= WINDOW_SIZE; i++)
            {
                if (i == WINDOW_SIZE - 1)
                    continue;
                else if (i == WINDOW_SIZE)
                {
                    addr_shift[reinterpret_cast<long>(para_Pose[i])] = para_Pose[i - 1];
                    if(USE_IMU)
                        addr_shift[reinterpret_cast<long>(para_SpeedBias[i])] = para_SpeedBias[i - 1];
                }
                else
                {
                    addr_shift[reinterpret_cast<long>(para_Pose[i])] = para_Pose[i];
                    if(USE_IMU)
                        addr_shift[reinterpret_cast<long>(para_SpeedBias[i])] = para_SpeedBias[i];
                }
            }
            for (int i = 0; i < NUM_OF_CAM; i++)
                addr_shift[reinterpret_cast<long>(para_Ex_Pose[i])] = para_Ex_Pose[i];

            addr_shift[reinterpret_cast<long>(para_Td[0])] = para_Td[0];

            
            vector<double *> parameter_blocks = marginalization_info->getParameterBlocks(addr_shift);
            if (last_marginalization_info)
                delete last_marginalization_info;
            last_marginalization_info = marginalization_info;
            last_marginalization_parameter_blocks = parameter_blocks;
            
        }
    }
    //printf("whole marginalization costs: %f \n", t_whole_marginalization.toc());
    //printf("whole time for ceres: %f \n", t_whole.toc());
}

你可能感兴趣的:(slam开源软件学习)