- 【安装环境】配置MMTracking环境
xuanyu22
安装环境机器学习神经网络深度学习python
版本v0.14.0安装torchnumpy的版本不能太高,否则后面安装时会发生冲突。先安装numpy,因为pytorch的安装会自动配置高版本numpy。condainstallnumpy=1.21.5mmtracking支持的torch版本有限,需要找到合适的condainstallpytorch==1.11.0torchvision==0.12.0cudatoolkit=10.2-cpytor
- 安装torch报错 raise ReadTimeoutError(self._pool, None, “Read timed out.“) pip._vendor.urllib3.exceptions
待磨的钝刨
pippytorch人工智能
文章目录1.配置cuda的torch环境时报错1.配置命令2.报错bug2.解决方法1.增加下载超时时间:2.尝试使用镜像源:3.检查网络连接:4.分次安装:5.重试安装:6.手动下载.whl文件安装1.配置cuda的torch环境时报错1.配置命令pipinstalltorch==2.0.1torchvision==0.15.2torchaudio==2.0.2--index-urlhttps:
- SAM2跑通(Ubuntu20.04)内含安装多个cuda
好好607
pytorchlinux
参考链接:github链接安装cuda,之前借鉴的方法安装多个cuda补充cuda安装:Asymlinkalreadyexistsat/usr/local/cuda.Updatetothisinstallation?选择no,否则会创建一个软连接覆盖之前那个/usr/local/cudasudogedit~/.bashrc如果按第二个链接安装的cuda,手动改一下版本即可SAM环境安装步骤除了本地
- 使用vllIm部署大语言模型
添砖JAVA的小墨
机器学习
使用vllm部署大语言模型一般需要以下步骤:一、准备工作1.系统要求-操作系统:常见的Linux发行版(如Ubuntu、CentOS)或Windows(通过WSL)。-GPU支持:NVIDIAGPU并安装了适当的驱动程序。-足够的内存和存储空间。2.安装依赖-Python3.8及以上版本。-CUDA工具包(根据GPU型号选择合适的版本)。二、安装vllm1.创建虚拟环境(推荐)-使用Conda:c
- vllm在线推理踩坑记
懂点投资的码农
大语言模型ai语言模型python
最近在《AI大模型全栈工程师》课程里看老师推荐使用vllm部署大模型,优点就不详细介绍了,这里摘抄一段来自于Qwen2上手指南对于它的简单介绍:它易于使用,且具有最先进的服务吞吐量、高效的注意力键值内存管理(通过PagedAttention实现)、连续批处理输入请求、优化的CUDA内核等功能。至于原理就先不看了,直接上手部署,以后再来补理论知识。一、vLLM在线推理在Qwen2的上市指南里介绍了v
- 多版本cuda安装及灵活切换详细教程
Fzc_PCL
CUDALinux记录cudalinux
一、首先介绍下我所使用的环境ubuntu18.04+1080ti二、下载安装包1.cudatoolkit下载①环境选择,想要多版本共存的,尽量选择runfile文件进行安装②有些cudatoolkit下载页面,和我上边的一样,没有对应的安装包下载按钮,BaseInstaller中只给了两行命令,如果运行第一行命令的话,下载会比较慢,我是直接复制wget后边的链接在新网页窗口中打开,会自动弹出下载窗
- Cuda 程序编译报错: fatal error: cusparse.h: No such file or directory
原野寻踪
实践经验cuda
编译cuda程序时发现下列报错:/mnt/xxx/miniconda3/envs/xxx/lib/python3.8/site-packages/torch/include/ATen/cuda/CUDAContext.h:6:10:fatalerror:cusparse.h:Nosuchfileordirectory#include^~~~~~~~~~~~检查发现是选择了错误的Cuda版本。ls/
- 天下苦英伟达久矣!PyTorch官方免CUDA加速推理,Triton时代要来?
诗者才子酒中仙
物联网/互联网/人工智能/其他pytorch人工智能python
在做大语言模型(LLM)的训练、微调和推理时,使用英伟达的GPU和CUDA是常见的做法。在更大的机器学习编程与计算范畴,同样严重依赖CUDA,使用它加速的机器学习模型可以实现更大的性能提升。虽然CUDA在加速计算领域占据主导地位,并成为英伟达重要的护城河之一。但其他一些工作的出现正在向CUDA发起挑战,比如OpenAI推出的Triton,它在可用性、内存开销、AI编译器堆栈构建等方面具有一定的优势
- GPU版pytorch安装
普通攻击往后拉
pythontips神经网络基础模型关键点
由于经常重装系统,导致电脑的环境需要经常重新配置,其中尤其是cudatorch比较难以安装,因此记录一下安装GPU版本torch的过程。1)安装CUDAtoolkit这个可以看做是N卡所有cuda计算的基础,一般都会随驱动的更新自动安装,但是不全,仍然需要安装toolkit,并不需要先看已有版本是哪个,反正下载完后会自动覆盖原有的cuda。下载网站两个:国内网站:只能下载最新的toolkit,但是
- 人工智能-GPU版本机器学习、深度学习模型安装
bw876720687
人工智能机器学习深度学习
背景1、在有Nvidia-GPU的情况下模型使用cuda加速计算,但是很有多模型的GPU和CPU版本安装方式不同,如何安装lgb\cat\xgb.2、为了让代码有普适性,如何自适应环境当中的设备进行CPU或者GPU的调整?解决方案问题一:安装GPU版本的LightGBMLightGBM默认不会安装GPU支持版,需要手动编译以启用GPU。以下是在Linux和Windows上编译GPU版本LightG
- CUDA 编程入门(2):CUDA 调度模型
知识搬运工人
CUDAGPUCUDA
参考:CUDA编程入门(2):CUDA编程模型-知乎(zhihu.com)CUDA调度模型Block调度Block对应的物理硬件概念是SM,也就是说SM负责block中线程的执行,SM会为每个block分配需求的资源,比如寄存器,共享内存等,由于SM自身资源有限,因此它被分配到的block数量也是有限的,这取决于block中线程的资源需求。当所有的SM都饱和之后,剩下的blocks将会被暂时挂起,
- Ubuntu 开机出现 recovering journal 无法进入图形界面解决流程(不通用,自用)
Artintel
学习ubuntu
远程连接进入命令行:rm-rf/etc/X11/xorg.confcp/etc/X11/xorg.conf.failsafe/etc/X11/xorg.confsudoservicelightdmstopsudoapt-getremovenvidia*cdjohn/qudong+cuda9.0\+\cudnn/sudochmoda+xnv.runsudo./nv.run-no-x-check-no
- Yolo-v3利用GPU训练make时发生错误:/usr/bin/ld: cannot find -lcuda
徐小妞66666
一.利用GPU训练Yolov3时,首先要修改MakeFile文件,修改格式如下:GPU=1(原来为0)CUDNN=1(原来为0)NVCC=/usr/local/cuda/bin/nvcc(新建,注意自己本机的地址)二.此时make产生错误/usr/bin/ld:cannotfind-lcuda1.查看MakeFile文件找到该行代码:LDFLAGS+=-L/usr/local/cuda/lib64
- 【环境搭建:onnx模型部署】onnxruntime-gpu安装与测试(python)(1)
2401_83703835
程序员python深度学习pytorch
cuda==10.2cudnn==8.0.3onnxruntime-gpu==1.5.0or1.6.0pipinstallonnxruntime-gpu==1.6.0###2.2方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn在conda环境中安装,不依赖于本地主机上已安装的cuda和cudnn版本,灵活方便。这里,先说一下已经测试通过的组合:*python3.6,cu
- pytorch计算网络参数量和Flops
Mr_Lowbee
PyTorchpytorch深度学习人工智能
fromtorchsummaryimportsummarysummary(net,input_size=(3,256,256),batch_size=-1)输出的参数是除以一百万(/1000000)M,fromfvcore.nnimportFlopCountAnalysisinputs=torch.randn(1,3,256,256).cuda()flop_counter=FlopCountAna
- 使用TensorRT对YOLOv8模型进行加速推理
fengbingchun
DeepLearningCUDA/TensorRTYOLOv8TensorRT
这里使用GitHub上shouxieai的infer框架对YOLOv8模型进行加速推理,操作过程如下所示:1.配置环境,依赖项,包括:(1).CUDA:11.8(2).cuDNN:8.7.0(3).TensorRT:8.5.3.1(4).ONNX:1.16.0(5).OpenCV:4.10.02.cloneinfer代码:https://github.com/shouxieai/infer3.使用
- ONNX Runtime、CUDA、cuDNN、TensorRT版本对应
可keke
ML&DLpytorchdeeplearning
文章目录ONNXRuntime的安装ONNXRuntime与CUDA、cuDNN的版本对应ONNXRuntime与ONNX的版本对应ONNXRuntime、TensorRT、CUDA版本对应ONNXRuntime的安装官方文档注意,到目前为止,onnxruntime-gpu在CUDA12.x和CUDA11.x下的安装命令是不同的,仔细阅读官方文档。验证安装python>>>importonnxru
- ONNXRuntime与CUDA版本对应
zy_destiny
部署YOLOonnxruntimeonnX部署cudapython
onnxruntime-gpu版本可以说是一个非常简单易用的框架,因为通常用pytorch训练的模型,在部署时,会首先转换成onnx,而onnxruntime和onnx又是有着同一个爸爸,无疑,在op的支持上肯定是最好的。通常在安装onnxruntime时,需要将其版本与pytorch版本和CUDA版本进行对应,其中ONNXRuntime与CUDA版本对应关系表如下表所示。ONNXRuntimeC
- 【已解决】onnx无法找到CUDA的路径
烟花节
已解决人工智能深度学习pythonpip
报错RuntimeError:D:\a\_work\1\s\onnxruntime\python\onnxruntime_pybind_state.cc:857onnxruntime::python::CreateExecutionProviderInstanceCUDA_PATHissetbutCUDAwasntabletobeloaded.Pleaseinstallthecorrectvers
- Window 下 Vim 环境安装踩坑问题汇总及解决方法
yyywxk
#Python模块有关问题vimpythonmambawindows
导航Linux下Mamba及Vim安装问题参看本人之前博客:Mamba环境安装踩坑问题汇总及解决方法Linux下Vmamba安装教程参看本人之前博客:Vmamba安装教程(无需更改base环境中的cuda版本)Windows下VMamba的安装参看本人之前博客:Windows下VMamba安装教程(无需更改base环境中的cuda版本且可加速)Window下Mamba环境教程参看本人之前博客:Wi
- windows11 wsl2 ubuntu20.04安装vision mamba并进行测试
一剑斩蛟龙
人工智能深度学习图像处理计算机视觉python机器学习pytorch
windows11wsl2ubuntu20.04安装visionmamba安装流程使用cifar-100测试安装成功安装流程visionmamba安装了半天才跑通,记录一下流程在wsl上安装cudawgethttps://developer.download.nvidia.cn/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_l
- [Lora][微调] Qwen-VL/Qwen-VL-chat微调问题
翔迅AI
python
@[Lora][微调]Qwen-VL/Qwen-VL-chat微调问题关于Qwen-VL在lora过程中出现的问题总结。模型预训练错误一“erfinv_cuda”notimplementedfor‘BFloat16’RuntimeError:"erfinv_cuda"notimplementedfor'BFloat16'参考github中issue253给出的意见,修改Qwen-VL-Chat/v
- 【Pytorch】cumsum的实现逻辑
栏杆拍遍看吴钩
pytorchpytorch人工智能python
本文只记录cumsum的实现逻辑的CUDA部分,也即底层调用了CUDA的什么实现算子。voidlaunch_cumsum_cuda_kernel(constTensorBase&result,constTensorBase&self,int64_tdim){AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(ScalarType::Half,ScalarType::BFl
- 百度飞桨paddle安装 包括CUDA,cuDNN,opencv的安装
小甲学长
opencv百度paddlepaddle
conda创建新环境这部分代码均在AnacondaPrompt中写,要求已有Anaconda第一步:创建condacreate--nameyourEnvpython=3.6–name:也可以缩写为【-n】,【yourEnv】是新创建的虚拟环境的名字,创建完,可以装anaconda的目录下找到envs/yourEnv目录python=2.7:是python的版本号。也可以指定为【python=3.6
- 深度学习回归任务训练代码模版
槐月初叁
深度学习深度学习回归人工智能
深度学习回归任务训练代码模版文章目录深度学习回归任务训练代码模版参数设置功能函数数据加载自定义数据集加载类特征选择(可选)数据读取定义模型训练模型训练迭代+验证迭代使用`tensorboard`输出模型训练过程和指标可视化(可选)结果预测参考参数设置超参设置:config包含所有训练需要的超参数(便于后续的调参),以及模型需要存储的位置device='cuda'iftorch.cuda.is_av
- cpu运行gpu上的pytorch 报错:AssertionError:torch not compiled with cuda enabled——已解决
霍格沃茨电气魔法师
pythonjavapython数据库js深度学习
感觉今天介绍的这种方法可以解决所有这种报错出现的问题事件发生:报错:AssertionError:torchnotcompiledwithcudaenabled解决方法:后来看到这个代码parser.add_argument('--test_device',default="cuda:0",type=str,
- Transiting from CUDA to HIP(三)
青禾子的夏
HIP异构计算Rocm开发语言
一、Workarounds1.memcpyToSymbol在HIP(Heterogeneous-computeInterfaceforPortability)中,hipMemcpyToSymbol函数用于将数据从主机内存复制到设备上的全局内存或常量内存中,这样可以在设备端的内核中访问这些数据。这个功能特别有用,因为它允许在主机端定义数据符号,并在设备端的内核中使用这些符号。#include#inc
- HALCON 错误代码 #7709
聪明不喝牛奶
Halcon+CSharp深度学习halcon深度学习
前言最近在研究halcon的深度学习,在环境配置上花了不少的功夫搞定,结果正要开始训练分类的第二个train文件就出现了一个错误,报7709,折腾了三天才解决。原因报7709主要的原因有如下几个原因:1、就是你选的cuda版本和cudnn的不匹配,这个原因应该大家在选择的时候注意一下版本对比的话可以避免,基本上不是这个原因造成的。2、显卡的驱动版本的过低,需要下载一个驱动精灵升级一下显卡的驱动,但
- ERROR: No matching distribution found for torch-geometri satisfies the requirement torch-geometric
zzzzz忠杰
笔记pytorchpython深度学习
试了网上的whl下载确保虚拟环境下nvcc和cuda版本一致,还不行遂找淘宝大佬,大佬换了pytorch版本python版本都不行最后根据报错出现的setup安装了pytest-runner,然后pipsearch。再pipinstalltorch-geometric的时候就成功了pipinstallpytest-runnerpipsearchtorch-geometricpipinstallto
- 解决安装依赖项时的ERROR: No matching distribution found for torch==1.10.0+cu111问题
CAI2256
python深度学习神经网络pytorch
这个错误通常是由于没有找到与你尝试安装的torch==1.10.0+cu111版本相匹配的Python包分发版本所致。在这种情况下,+cu111表示你正在安装针对CUDA11.1的Torch版本。因此,你需要确保你的环境中已经安装了CUDA11.1,并且你正在使用与之兼容的Torch版本。如果你使用的是Anaconda或Miniconda等Python环境管理工具,你可以尝试使用以下命令来安装CU
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开