scrapy-redis源码分析

文章目录

  • 总序
  • 一、connect.py
  • 二、dupefilters.py
  • 三、picklecompat.py
  • 四、pipeline.py
  • 五、queue.py
  • 六、scheduler.py
  • 七、spider.py
  • 总结:

总序

scrapy是Python的一个非常好用的爬虫库,功能非常强大,但是当我们要爬取的页面非常多的时候,单个主机的处理能力就不能满足我们的需求了(无论是处理速度还是网络请求的并发数),这时候分布式爬虫的优势就显现出来,人多力量大。而scrapy-Redis就是结合了分布式数据库redis,重写了scrapy一些比较关键的代码,将scrapy变成一个可以在多个主机上同时运行的分布式爬虫。 想全面的理解分布式爬虫的运行原理,得看scrapy-redis的源代码才行(得先理解scrapy的运行原理,不然看scrapy-redis还是比较费劲),不过scrapy-redis的源代码很少,也比较好懂,很快就能看完。

scrapy-redis源码分析_第1张图片
connection.py 连接得配置文件
defaults.py 默认得配置文件
dupefilter.py 去重规则
picklecompat.py 格式化
pipelines.py 序列化变成字符串
queue.py 队列
scheduler.py 调度器
spiders.py 爬虫
utils.py 把字节转换成字符串

一、connect.py

import six
from scrapy.utils.misc import load_object
from . import defaults

# 快速映射settings配置文件中redis的基础配置字典
SETTINGS_PARAMS_MAP = {
    'REDIS_URL': 'url',
    'REDIS_HOST': 'host',
    'REDIS_PORT': 'port',
    'REDIS_ENCODING': 'encoding',
}

# 根据scrapy中settings配置文件信息返回一个redis客户端实例对象
def get_redis_from_settings(settings):
"""Returns a redis client instance from given Scrapy settings object.
 
    This function uses ``get_client`` to instantiate the client and uses
    ``defaults.REDIS_PARAMS`` global as defaults values for the parameters. You
    can override them using the ``REDIS_PARAMS`` setting.
 
    Parameters
    ----------
    settings : Settings
        A scrapy settings object. See the supported settings below.
 
    Returns
    -------
    server
        Redis client instance.
 
    Other Parameters
    ----------------
    REDIS_URL : str, optional
        Server connection URL.
    REDIS_HOST : str, optional
        Server host.
    REDIS_PORT : str, optional
        Server port.
    REDIS_ENCODING : str, optional
        Data encoding.
    REDIS_PARAMS : dict, optional
        Additional client parameters.
 
    """
    params = defaults.REDIS_PARAMS.copy()
    params.update(settings.getdict('REDIS_PARAMS'))
     # XXX: Deprecate REDIS_* settings.
    for source, dest in SETTINGS_PARAMS_MAP.items():
        val = settings.get(source)
        if val:
            params[dest] = val
    # Allow ``redis_cls`` to be a path to a class.
    if isinstance(params.get('redis_cls'), six.string_types):
        params['redis_cls'] = load_object(params['redis_cls'])

    return get_redis(**params)
# Backwards compatible alias.
from_settings = get_redis_from_settings

# 返回一个redis的Strictredis实例对象
def get_redis(**kwargs):
 """Returns a redis client instance.
 
    Parameters
    ----------
    redis_cls : class, optional
        Defaults to ``redis.StrictRedis``.
    url : str, optional
        If given, ``redis_cls.from_url`` is used to instantiate the class.
    **kwargs
        Extra parameters to be passed to the ``redis_cls`` class.
 
    Returns
    -------
    server
        Redis client instance.
 
    """
    redis_cls = kwargs.pop('redis_cls', defaults.REDIS_CLS)
    url = kwargs.pop('url', None)
    if url:
        return redis_cls.from_url(url, **kwargs)
    else:
        return redis_cls(**kwargs)

connect文件引入了redis模块,这个是redis-python库的接口,用于通过python访问redis数据库,主要是实现连接redis数据库的功能(返回的是reids库的Redis对象或者StrictRedis对象,这俩都是可以直接用来进行数据操作的对象)。这些连接接口在其他文件中经常被用到。其中,我们可以看到,要想连接到redis数据库,和其他数据库差不多,需要一个ip地址、端口号、用户名密码(可选)和一个整型的数据库编号,同时我们还可以再scrapy的settings文件中配置套接字的超时时间、等待时间等。

二、dupefilters.py

import logging
import time
from scrapy.dupefilters import BaseDupeFilter
from scrapy.utils.request import request_fingerprint
from . import defaults
from .connection import get_redis_from_settings
logger = logging.getLogger(__name__)

# 对请求做去重处理,可以被分布式下不同的schedule调用
class RFPDupeFilter(BaseDupeFilter):
    """Redis-based request duplicates filter.
    This class can also be used with default Scrapy's scheduler.
    """
    logger = logger

    def __init__(self, server, key, debug=False):
            """Initialize the duplicates filter.
        Parameters
        server : redis.StrictRedis
            The redis server instance.
        key : str
            Redis key Where to store fingerprints.
        debug : bool, optional
            Whether to log filtered requests.
        """
        self.server = server
        self.key = key
        self.debug = debug
        self.logdupes = True


    # 通过settings配置文件信息返回一个redis示例对象
    @classmethod
    def from_settings(cls, settings):
            """Returns an instance from given settings.
        This uses by default the key ``dupefilter:``. When using the
        ``scrapy_redis.scheduler.Scheduler`` class, this method is not used as
        it needs to pass the spider name in the key.
        Parameters
        settings : scrapy.settings.Settings
        Returns
        RFPDupeFilter
            A RFPDupeFilter instance.
        """
        server = get_redis_from_settings(settings)
        # XXX: This creates one-time key. needed to support to use this
        # class as standalone dupefilter with scrapy's default scheduler
        # if scrapy passes spider on open() method this wouldn't be needed
        # TODO: Use SCRAPY_JOB env as default and fallback to timestamp.
        key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}
        debug = settings.getbool('DUPEFILTER_DEBUG')
        return cls(server, key=key, debug=debug)

    @classmethod
    def from_crawler(cls, crawler):
     """Returns instance from crawler.
        Parameters
        crawler : scrapy.crawler.Crawler
        Returns
        RFPDupeFilter
            Instance of RFPDupeFilter.
        """
        return cls.from_settings(crawler.settings)

    def request_seen(self, request):
     """Returns True if request was already seen.
        Parameters
        request : scrapy.http.Request
        Returns
        bool
        """
        fp = self.request_fingerprint(request)
        # This returns the number of values added, zero if already exists.
        added = self.server.sadd(self.key, fp)
        return added == 0

    # 这个方法是用来调用request_fingerprint接口的,这个接口通过sha1算法来判断两个url请
    #求地址是否相同(注意,这里面不完全是我们之前理解的hash了,如果两个url的地址相同,请求方式和参数都相同,
    #但是请求参数的前后顺序不同的话也别判定为同一个url地址,)从而达到url的去重功能。
    def request_fingerprint(self, request):
        return request_fingerprint(request)

    # Scrapy's scheduler调用,删除数据,关闭连接
    def close(self, reason=''):
            """Delete data on close. Called by Scrapy's scheduler.
        Parameters
        reason : str, optional
        """
        self.clear()

    # 清空操作记录数据
    def clear(self):
        """Clears fingerprints data."""
        self.server.delete(self.key)

    # 请求日志信息
    def log(self, request, spider):
    """Logs given request.
        Parameters
        request : scrapy.http.Request
        spider : scrapy.spiders.Spider
        """
        if self.debug:
            msg = "Filtered duplicate request: %(request)s"
            self.logger.debug(msg, {'request': request}, extra={'spider': spider})
        elif self.logdupes:
            msg = ("Filtered duplicate request %(request)s"
                   " - no more duplicates will be shown"
                   " (see DUPEFILTER_DEBUG to show all duplicates)")
            self.logger.debug(msg, {'request': request}, extra={'spider': spider})
            self.logdupes = False
        

这个文件看起来比较复杂,重写了scrapy本身已经实现的request判重功能。因为本身scrapy单机跑的话,只需要读取内存中的request队列或者持久化的request队列(scrapy默认的持久化似乎是json格式的文件,不是数据库)就能判断这次要发出的request url是否已经请求过或者正在调度(本地读就行了)。而分布式跑的话,就需要各个主机上的scheduler都连接同一个数据库的同一个request池来判断这次的请求是否是重复的了。
在这个文件中,通过继承BaseDupeFilter重写他的方法,实现了基于redis的判重。根据源代码来看,scrapy-redis使用了scrapy本身的一个fingerprint接request_fingerprint,这个接口很有趣,根据scrapy文档所说,他通过hash来判断两个url是否相同(相同的url会生成相同的hash结果),但是当两个url的地址相同,get型参数相同但是顺序不同时,也会生成相同的hash结果(这个真的比较神奇。。。)所以scrapy-redis依旧使用url的fingerprint来判断request请求是否已经出现过。这个类通过连接redis,使用一个key来向redis的一个set中插入fingerprint(这个key对于同一种spider是相同的,redis是一个key-value的数据库,如果key是相同的,访问到的值就是相同的,这里使用spider名字+DupeFilter的key就是为了在不同主机上的不同爬虫实例,只要属于同一种spider,就会访问到同一个set,而这个set就是他们的url判重池),如果返回值为0,说明该set中该fingerprint已经存在(因为集合是没有重复值的),则返回False,如果返回值为1,说明添加了一个fingerprint到set中,则说明这个request没有重复,于是返回True,还顺便把新fingerprint加入到数据库中了。
DupeFilter判重会在scheduler类中用到,每一个request在进入调度之前都要进行判重,如果重复就不需要参加调度,直接舍弃就好了,不然就是白白浪费资源。
分布式爬虫url去重原理:
  通过分析可以知道self.server为redis实例,使用一个key来向redis的一个set中插入fingerprint(这个key对于同一个spider是相同的,redis是一个key-value的数据库,如果key是相同的,访问到的值就是相同的,默认使用spider名字 + fingerpoint的key就是为了区分在不同主机上的不同spider实例,只要数据是同一个spider,就会访问到redis中的同一个spider-set而这个set就是url的判重池)。

三、picklecompat.py

"""A pickle wrapper module with protocol=-1 by default."""
 
try:
    import cPickle as pickle  # PY2
except ImportError:
    import pickle
 
def loads(s):
    return pickle.loads(s)
 
def dumps(obj):
    return pickle.dumps(obj, protocol=-1)

这里实现了loads和dumps两个函数,其实就是实现了一个serializer:因为redis数据库不能存储复杂对象(value部分只能是字符串,字符串列表,字符串集合和hash,key部分只能是字符串),所以我们存啥都要先串行化成文本才行。这里使用的就是python的pickle模块,一个兼容py2和py3的串行化工具。。这个serializer主要用于一会的scheduler存reuqest对象。

四、pipeline.py

from scrapy.utils.misc import load_object
from scrapy.utils.serialize import ScrapyJSONEncoder
from twisted.internet.threads import deferToThread
 
from . import connection, defaults
 
 
default_serialize = ScrapyJSONEncoder().encode
 
 
class RedisPipeline(object):
    """Pushes serialized item into a redis list/queue
 
    Settings
    --------
    REDIS_ITEMS_KEY : str
        Redis key where to store items.
    REDIS_ITEMS_SERIALIZER : str
        Object path to serializer function.
 
    """
 
    def __init__(self, server,
                 key=defaults.PIPELINE_KEY,
                 serialize_func=default_serialize):
        """Initialize pipeline.
 
        Parameters
        ----------
        server : StrictRedis
            Redis client instance.
        key : str
            Redis key where to store items.
        serialize_func : callable
            Items serializer function.
 
        """
        self.server = server
        self.key = key
        self.serialize = serialize_func
 
    @classmethod
    def from_settings(cls, settings):
        params = {
            'server': connection.from_settings(settings),
        }
        if settings.get('REDIS_ITEMS_KEY'):
            params['key'] = settings['REDIS_ITEMS_KEY']
        if settings.get('REDIS_ITEMS_SERIALIZER'):
            params['serialize_func'] = load_object(
                settings['REDIS_ITEMS_SERIALIZER']
            )
 
        return cls(**params)
 
    @classmethod
    def from_crawler(cls, crawler):
        return cls.from_settings(crawler.settings)
 
    def process_item(self, item, spider):
        return deferToThread(self._process_item, item, spider)
 
    def _process_item(self, item, spider):
        key = self.item_key(item, spider)
        data = self.serialize(item)
        self.server.rpush(key, data)
        return item
 
    def item_key(self, item, spider):
        """Returns redis key based on given spider.
 
        Override this function to use a different key depending on the item
        and/or spider.
 
        """
        return self.key % {'spider': spider.name}

pipeline文件实现了一个item pipieline类,用来实现数据分布式处理,和scrapy的item pipeline是同一个对象,通过从settings中拿到我们配置的REDIS_ITEMS_KEY作为key,把item串行化之后存入redis数据库对应的value中(这个value可以看出出是个list,我们的每个item是这个list中的一个结点),这个pipeline把提取出的item存起来,主要是为了方便我们延后处理数据。

五、queue.py

from scrapy.utils.reqser import request_to_dict, request_from_dict
 
from . import picklecompat
 
 # 队列基类
class Base(object):
    """Per-spider base queue class"""
 
    def __init__(self, server, spider, key, serializer=None):
        """Initialize per-spider redis queue.
 
        Parameters
        ----------
        server : StrictRedis
            Redis client instance.
        spider : Spider
            Scrapy spider instance.
        key: str
            Redis key where to put and get messages.
        serializer : object
            Serializer object with ``loads`` and ``dumps`` methods.
 
        """
        if serializer is None:
            # Backward compatibility.
            # TODO: deprecate pickle.
            serializer = picklecompat
        if not hasattr(serializer, 'loads'):
            raise TypeError("serializer does not implement 'loads' function: %r"
                            % serializer)
        if not hasattr(serializer, 'dumps'):
            raise TypeError("serializer '%s' does not implement 'dumps' function: %r"
                            % serializer)
 
        self.server = server
        self.spider = spider
        self.key = key % {'spider': spider.name}
        self.serializer = serializer
 
    def _encode_request(self, request):
        """Encode a request object"""
        obj = request_to_dict(request, self.spider)
        return self.serializer.dumps(obj)
 
    def _decode_request(self, encoded_request):
        """Decode an request previously encoded"""
        obj = self.serializer.loads(encoded_request)
        return request_from_dict(obj, self.spider)
 
    def __len__(self):
        """Return the length of the queue"""
        raise NotImplementedError
 
    def push(self, request):
        """Push a request"""
        raise NotImplementedError
 
    def pop(self, timeout=0):
        """Pop a request"""
        raise NotImplementedError
 
    def clear(self):
        """Clear queue/stack"""
        self.server.delete(self.key)
 
 #队列----先进先出
class FifoQueue(Base):
    """Per-spider FIFO queue"""
 
    def __len__(self):
        """Return the length of the queue"""
        return self.server.llen(self.key)
 
    def push(self, request):
        # request 进栈,进栈前对request做处理,request请求先被scrapy的接口request_to_dict
        #变成了一个dict对象(因为request对象实在#是比较复杂,有方法有属性不好串行化),
        #之后使用picklecompat中的serializer串行化为字符串,然后使用一个特定的key存入redis中
        #(该key在同一种spider中是相同的)
        """Push a request"""

        self.server.lpush(self.key, self._encode_request(request))
 
    def pop(self, timeout=0):
        # request出栈,其实就是从redis用那个特定的key去读其值(一个list),
        #从list中读取最早进去的那个,于是就先进先出了.
        """Pop a request"""
        if timeout > 0:
            data = self.server.brpop(self.key, timeout)
            if isinstance(data, tuple):
                data = data[1]
        else:
            data = self.server.rpop(self.key)
        if data:
            return self._decode_request(data)
 
 # 优先级队列
class PriorityQueue(Base):
    """Per-spider priority queue abstraction using redis' sorted set"""
 
    def __len__(self):
        """Return the length of the queue"""
        return self.server.zcard(self.key)
 
    def push(self, request):
        """Push a request"""
        data = self._encode_request(request)
        score = -request.priority
        # We don't use zadd method as the order of arguments change depending on
        # whether the class is Redis or StrictRedis, and the option of using
        # kwargs only accepts strings, not bytes.
        self.server.execute_command('ZADD', self.key, score, data)
 
    def pop(self, timeout=0):
        """
        Pop a request
        timeout not support in this queue class
        """
        # use atomic range/remove using multi/exec
        pipe = self.server.pipeline()
        pipe.multi()
        pipe.zrange(self.key, 0, 0).zremrangebyrank(self.key, 0, 0)
        results, count = pipe.execute()
        if results:
            return self._decode_request(results[0])
 
 # 栈----后进先出
class LifoQueue(Base):
    """Per-spider LIFO queue."""
 
    def __len__(self):
        """Return the length of the stack"""
        return self.server.llen(self.key)
 
    def push(self, request):
        """Push a request"""
        self.server.lpush(self.key, self._encode_request(request))
 
    def pop(self, timeout=0):
        """Pop a request"""
        if timeout > 0:
            data = self.server.blpop(self.key, timeout)
            if isinstance(data, tuple):
                data = data[1]
        else:
            data = self.server.lpop(self.key)
 
        if data:
            return self._decode_request(data)
 
 
# TODO: Deprecate the use of these names.
SpiderQueue = FifoQueue
SpiderStack = LifoQueue
SpiderPriorityQueue = PriorityQueue

这是个队列类,它会作为scheduler调度request的容器来维护一个秩序
该文件实现了几个容器类,可以看这些容器和redis交互频繁,同时使用了我们上边picklecompat中定义的serializer。这个文件实现的几个容器大体相同,只不过一个是队列,一个是栈,一个是优先级队列,这三个容器到时候会被scheduler对象实例化,来实现request的调度。比如我们使用SpiderQueue最为调度队列的类型,到时候request的调度方法就是先进先出,而实用SpiderStack就是先进后出了。
我们可以仔细看看SpiderQueue的实现,他的push函数就和其他容器的一样,只不过push进去的request请求先被scrapy的接口request_to_dict变成了一个dict对象(因为request对象实在是比较复杂,有方法有属性不好串行化),之后使用picklecompat中的serializer串行化为字符串,然后使用一个特定的key存入redis中(该key在同一种spider中是相同的)。而调用pop时,其实就是从redis用那个特定的key去读其值(一个list),从list中读取最早进去的那个,于是就先进先出了。
这些容器类都会作为scheduler调度request的容器,scheduler在每个主机上都会实例化一个,并且和spider一一对应,所以分布式运行时会有一个spider的多个实例和一个scheduler的多个实例存在于不同的主机上,但是,因为scheduler都是用相同的容器,而这些容器都连接同一个redis服务器,又都使用spider名加queue来作为key读写数据,所以不同主机上的不同爬虫实例公用一个request调度池,实现了分布式爬虫之间的统一调度。

六、scheduler.py

import importlib
import six
 
from scrapy.utils.misc import load_object
 
from . import connection, defaults
 
 
# TODO: add SCRAPY_JOB support.
class Scheduler(object):
    """Redis-based scheduler
 
    Settings
    --------
    SCHEDULER_PERSIST : bool (default: False)
        Whether to persist or clear redis queue.
    SCHEDULER_FLUSH_ON_START : bool (default: False)
        Whether to flush redis queue on start.
    SCHEDULER_IDLE_BEFORE_CLOSE : int (default: 0)
        How many seconds to wait before closing if no message is received.
    SCHEDULER_QUEUE_KEY : str
        Scheduler redis key.
    SCHEDULER_QUEUE_CLASS : str
        Scheduler queue class.
    SCHEDULER_DUPEFILTER_KEY : str
        Scheduler dupefilter redis key.
    SCHEDULER_DUPEFILTER_CLASS : str
        Scheduler dupefilter class.
    SCHEDULER_SERIALIZER : str
        Scheduler serializer.
 
    """
 
    def __init__(self, server,
                 persist=False,
                 flush_on_start=False,
                 queue_key=defaults.SCHEDULER_QUEUE_KEY,
                 queue_cls=defaults.SCHEDULER_QUEUE_CLASS,
                 dupefilter_key=defaults.SCHEDULER_DUPEFILTER_KEY,
                 dupefilter_cls=defaults.SCHEDULER_DUPEFILTER_CLASS,
                 idle_before_close=0,
                 serializer=None):
        """Initialize scheduler.
 
        Parameters
        ----------
        server : Redis
            The redis server instance.
        persist : bool
            Whether to flush requests when closing. Default is False.
        flush_on_start : bool
            Whether to flush requests on start. Default is False.
        queue_key : str
            Requests queue key.
        queue_cls : str
            Importable path to the queue class.
        dupefilter_key : str
            Duplicates filter key.
        dupefilter_cls : str
            Importable path to the dupefilter class.
        idle_before_close : int
            Timeout before giving up.
 
        """
        if idle_before_close < 0:
            raise TypeError("idle_before_close cannot be negative")
 
        self.server = server
        self.persist = persist
        self.flush_on_start = flush_on_start
        self.queue_key = queue_key
        self.queue_cls = queue_cls
        self.dupefilter_cls = dupefilter_cls
        self.dupefilter_key = dupefilter_key
        self.idle_before_close = idle_before_close
        self.serializer = serializer
        self.stats = None
 
    def __len__(self):
        return len(self.queue)
 
    @classmethod
    def from_settings(cls, settings):
        kwargs = {
            'persist': settings.getbool('SCHEDULER_PERSIST'),
            'flush_on_start': settings.getbool('SCHEDULER_FLUSH_ON_START'),
            'idle_before_close': settings.getint('SCHEDULER_IDLE_BEFORE_CLOSE'),
        }
 
        # If these values are missing, it means we want to use the defaults.
        optional = {
            # TODO: Use custom prefixes for this settings to note that are
            # specific to scrapy-redis.
            'queue_key': 'SCHEDULER_QUEUE_KEY',
            'queue_cls': 'SCHEDULER_QUEUE_CLASS',
            'dupefilter_key': 'SCHEDULER_DUPEFILTER_KEY',
            # We use the default setting name to keep compatibility.
            'dupefilter_cls': 'DUPEFILTER_CLASS',
            'serializer': 'SCHEDULER_SERIALIZER',
        }
        for name, setting_name in optional.items():
            val = settings.get(setting_name)
            if val:
                kwargs[name] = val
 
        # Support serializer as a path to a module.
        if isinstance(kwargs.get('serializer'), six.string_types):
            kwargs['serializer'] = importlib.import_module(kwargs['serializer'])
 
        server = connection.from_settings(settings)
        # Ensure the connection is working.
        server.ping()
 
        return cls(server=server, **kwargs)
 
    @classmethod
    def from_crawler(cls, crawler):
        instance = cls.from_settings(crawler.settings)
        # FIXME: for now, stats are only supported from this constructor
        instance.stats = crawler.stats
        return instance
 
    def open(self, spider):
        self.spider = spider
 
        try:
            self.queue = load_object(self.queue_cls)(
                server=self.server,
                spider=spider,
                key=self.queue_key % {'spider': spider.name},
                serializer=self.serializer,
            )
        except TypeError as e:
            raise ValueError("Failed to instantiate queue class '%s': %s",
                             self.queue_cls, e)
 
        try:
            self.df = load_object(self.dupefilter_cls)(
                server=self.server,
                key=self.dupefilter_key % {'spider': spider.name},
                debug=spider.settings.getbool('DUPEFILTER_DEBUG'),
            )
        except TypeError as e:
            raise ValueError("Failed to instantiate dupefilter class '%s': %s",
                             self.dupefilter_cls, e)
 
        if self.flush_on_start:
            self.flush()
        # notice if there are requests already in the queue to resume the crawl
        if len(self.queue):
            spider.log("Resuming crawl (%d requests scheduled)" % len(self.queue))
 
    def close(self, reason):
        if not self.persist:
            self.flush()
 
    def flush(self):
        self.df.clear()
        self.queue.clear()
 
    def enqueue_request(self, request):
        if not request.dont_filter and self.df.request_seen(request):
            self.df.log(request, self.spider)
            return False
        if self.stats:
            self.stats.inc_value('scheduler/enqueued/redis', spider=self.spider)
        self.queue.push(request)
        return True
 
    def next_request(self):
        block_pop_timeout = self.idle_before_close
        request = self.queue.pop(block_pop_timeout)
        if request and self.stats:
            self.stats.inc_value('scheduler/dequeued/redis', spider=self.spider)
        return request
 
    def has_pending_requests(self):
        return len(self) > 0

这个文件重写了scheduler类,用来代替scrapy.core.scheduler的原有调度器。其实对原有调度器的逻辑没有很大的改变,主要是使用了redis作为数据存储的媒介,以达到各个爬虫之间的统一调度。
scheduler负责调度各个spider的request请求,scheduler初始化时,通过settings文件读取queue和dupefilters的类型(一般就用上边默认的),配置queue和dupefilters使用的key(一般就是spider name加上queue或者dupefilters,这样对于同一种spider的不同实例,就会使用相同的数据块了)。每当一个request要被调度时,enqueue_request被调用,scheduler使用dupefilters来判断这个url是否重复,如果不重复,就添加到queue的容器中(先进先出,先进后出和优先级都可以,可以在settings中配置)。当调度完成时,next_request被调用,scheduler就通过queue容器的接口,取出一个request,把他发送给相应的spider,让spider进行爬取工作。
同时我们可以看到,如果setting文件中配置了SCHEDULER_PERSIST为True,那么在爬虫关闭的时候scheduler会调用自己的flush函数把redis数据库中的判重和调度池全部清空,使得我们的爬取进度完全丢失(但是item没有丢失,item数据在另一个键中储存)。如果设置SCHEDULER_PERSIST为False,爬虫关闭后,判重池和调度池仍然存在于redis数据库中,则我们再次开启爬虫时,可以接着上一次的进度继续爬取。

七、spider.py

from scrapy import signals
from scrapy.exceptions import DontCloseSpider
from scrapy.spiders import Spider, CrawlSpider
 
from . import connection, defaults
from .utils import bytes_to_str
 
# 实现从redis的队列中读取url
class RedisMixin(object):
    """Mixin class to implement reading urls from a redis queue."""
    redis_key = None
    redis_batch_size = None
    redis_encoding = None
 
    # Redis client placeholder.
    server = None
 	# 链接redis
    def start_requests(self):
        """Returns a batch of start requests from redis."""
        return self.next_requests()
 
    def setup_redis(self, crawler=None):
        """Setup redis connection and idle signal.
 
        This should be called after the spider has set its crawler object.
        """
        if self.server is not None:
            return
 
        if crawler is None:
            # We allow optional crawler argument to keep backwards
            # compatibility.
            # XXX: Raise a deprecation warning.
            crawler = getattr(self, 'crawler', None)
 
        if crawler is None:
            raise ValueError("crawler is required")
 
        settings = crawler.settings
 
        if self.redis_key is None:
            self.redis_key = settings.get(
                'REDIS_START_URLS_KEY', defaults.START_URLS_KEY,
            )
 
        self.redis_key = self.redis_key % {'name': self.name}
 
        if not self.redis_key.strip():
            raise ValueError("redis_key must not be empty")
 
        if self.redis_batch_size is None:
            # TODO: Deprecate this setting (REDIS_START_URLS_BATCH_SIZE).
            self.redis_batch_size = settings.getint(
                'REDIS_START_URLS_BATCH_SIZE',
                settings.getint('CONCURRENT_REQUESTS'),
            )
 
        try:
            self.redis_batch_size = int(self.redis_batch_size)
        except (TypeError, ValueError):
            raise ValueError("redis_batch_size must be an integer")
 
        if self.redis_encoding is None:
            self.redis_encoding = settings.get('REDIS_ENCODING', defaults.REDIS_ENCODING)
 
        self.logger.info("Reading start URLs from redis key '%(redis_key)s' "
                         "(batch size: %(redis_batch_size)s, encoding: %(redis_encoding)s",
                         self.__dict__)
 
        self.server = connection.from_settings(crawler.settings)
        # The idle signal is called when the spider has no requests left,
        # that's when we will schedule new requests from redis queue
        crawler.signals.connect(self.spider_idle, signal=signals.spider_idle)
 	# 这个方法 的作用就是从redis中获取start_url
    def next_requests(self):
        """Returns a request to be scheduled or none."""
        use_set = self.settings.getbool('REDIS_START_URLS_AS_SET', defaults.START_URLS_AS_SET)
        fetch_one = self.server.spop if use_set else self.server.lpop
        # XXX: Do we need to use a timeout here?
        found = 0
        # TODO: Use redis pipeline execution.
        while found < self.redis_batch_size:
            data = fetch_one(self.redis_key)
            if not data:
                # Queue empty.
                break
            req = self.make_request_from_data(data)
            if req:
                yield req
                found += 1
            else:
                self.logger.debug("Request not made from data: %r", data)
 
        if found:
            self.logger.debug("Read %s requests from '%s'", found, self.redis_key)
 
    def make_request_from_data(self, data):
        """Returns a Request instance from data coming from Redis.
 
        By default, ``data`` is an encoded URL. You can override this method to
        provide your own message decoding.
 
        Parameters
        ----------
        data : bytes
            Message from redis.
 
        """
        url = bytes_to_str(data, self.redis_encoding)
        return self.make_requests_from_url(url)
 
    def schedule_next_requests(self):
        """Schedules a request if available"""
        # TODO: While there is capacity, schedule a batch of redis requests.
        for req in self.next_requests():
            self.crawler.engine.crawl(req, spider=self)
 
    def spider_idle(self):
        """Schedules a request if available, otherwise waits."""
        # XXX: Handle a sentinel to close the spider.
        self.schedule_next_requests()
        raise DontCloseSpider
 
 
class RedisSpider(RedisMixin, Spider):
    """Spider that reads urls from redis queue when idle.
 
    Attributes
    ----------
    redis_key : str (default: REDIS_START_URLS_KEY)
        Redis key where to fetch start URLs from..
    redis_batch_size : int (default: CONCURRENT_REQUESTS)
        Number of messages to fetch from redis on each attempt.
    redis_encoding : str (default: REDIS_ENCODING)
        Encoding to use when decoding messages from redis queue.
 
    Settings
    --------
    REDIS_START_URLS_KEY : str (default: ":start_urls")
        Default Redis key where to fetch start URLs from..
    REDIS_START_URLS_BATCH_SIZE : int (deprecated by CONCURRENT_REQUESTS)
        Default number of messages to fetch from redis on each attempt.
    REDIS_START_URLS_AS_SET : bool (default: False)
        Use SET operations to retrieve messages from the redis queue. If False,
        the messages are retrieve using the LPOP command.
    REDIS_ENCODING : str (default: "utf-8")
        Default encoding to use when decoding messages from redis queue.
 
    """
 
    @classmethod
    def from_crawler(self, crawler, *args, **kwargs):
        obj = super(RedisSpider, self).from_crawler(crawler, *args, **kwargs)
        obj.setup_redis(crawler)
        return obj
 
 
class RedisCrawlSpider(RedisMixin, CrawlSpider):
    """Spider that reads urls from redis queue when idle.
 
    Attributes
    ----------
    redis_key : str (default: REDIS_START_URLS_KEY)
        Redis key where to fetch start URLs from..
    redis_batch_size : int (default: CONCURRENT_REQUESTS)
        Number of messages to fetch from redis on each attempt.
    redis_encoding : str (default: REDIS_ENCODING)
        Encoding to use when decoding messages from redis queue.
 
    Settings
    --------
    REDIS_START_URLS_KEY : str (default: ":start_urls")
        Default Redis key where to fetch start URLs from..
    REDIS_START_URLS_BATCH_SIZE : int (deprecated by CONCURRENT_REQUESTS)
        Default number of messages to fetch from redis on each attempt.
    REDIS_START_URLS_AS_SET : bool (default: True)
        Use SET operations to retrieve messages from the redis queue.
    REDIS_ENCODING : str (default: "utf-8")
        Default encoding to use when decoding messages from redis queue.
 
    """
 
    @classmethod
    def from_crawler(self, crawler, *args, **kwargs):
        obj = super(RedisCrawlSpider, self).from_crawler(crawler, *args, **kwargs)
        obj.setup_redis(crawler)
        return obj

spider的改动也不是很大,主要是通过connect接口,给spider绑定了spider_idle信号,spider初始化时,通过setup_redis函数初始化好和redis的连接,之后通过next_requests函数从redis中取出strat url,使用的key是settings中REDIS_START_URLS_AS_SET定义的(注意了这里的初始化url池和我们上边的queue的url池不是一个东西,queue的池是用于调度的,初始化url池是存放入口url的,他们都存在redis中,但是使用不同的key来区分,就当成是不同的表吧),spider使用少量的start url,可以发展出很多新的url,这些url会进入scheduler进行判重和调度。直到spider跑到调度池内没有url的时候,会触发spider_idle信号,从而触发spider的next_requests函数,再次从redis的start url池中读取一些url。

总结:

crapy-redis的总体思路:这个工程通过重写scheduler和spider类,实现了调度、spider启动和redis的交互。实现新的dupefilter和queue类,达到了判重和调度容器和redis的交互,因为每个主机上的爬虫进程都访问同一个redis数据库,所以调度和判重都统一进行统一管理,达到了分布式爬虫的目的。
当spider被初始化时,同时会初始化一个对应的scheduler对象,这个调度器对象通过读取settings,配置好自己的调度容器queue和判重工具dupefilter。每当一个spider产出一个request的时候,scrapy内核会把这个reuqest递交给这个spider对应的scheduler对象进行调度,scheduler对象通过访问redis对request进行判重,如果不重复就把他添加进redis中的调度池。当调度条件满足时,scheduler对象就从redis的调度池中取出一个request发送给spider,让他爬取。当spider爬取的所有暂时可用url之后,scheduler发现这个spider对应的redis的调度池空了,于是触发信号spider_idle,spider收到这个信号之后,直接连接redis读取strart url池,拿去新的一批url入口,然后再次重复上边的工作

你可能感兴趣的:(python,#python高级,分布式,python)