- NL2SQL进阶系列(1):DB-GPT-Hub、SQLcoder、Text2SQL开源应用实践详解
汀、人工智能
LLM工业级落地实践人工智能LLM自然语言处理NL2SQL大模型应用Text2SQLgpt
NL2SQL进阶系列(1):DB-GPT-Hub、SQLcoder、Text2SQL开源应用实践详解NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理1.MindSQL(库)MindSQL是一
- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- FB-OCC: 3D Occupancy Prediction based on Forward-BackwardView Transformation
justtoomuchforyou
智驾
NVidia,CVPR20233DOccupancyPredictionChallengeworkshoppaper:https://arxiv.org/pdf/2307.1492code:https://github.com/NVlabs/FB-BEV大参数量imagebackboneInternImage-H,1B外部数据集预训练:object365nuscenes:有点云label,强化网络
- AWS Lambda与RDS连接优化之旅
t0_54manong
编程问题解决手册aws云计算个人开发
在云计算的时代,AWSLambda与RDS的结合为开发者提供了高效且灵活的解决方案。然而,在实际应用中,我们常常会遇到一些性能瓶颈。本文将通过一个真实案例,探讨如何优化AWSLambda与RDS之间的连接,以提高API的响应速度。背景介绍最近,我们在AWS上部署了一个使用Dotnet6开发的API,它通过APIGateway暴露给外部,并连接到同VPC内的MySQLAuroraRDS数据库。部署前
- BI+AI实战:我们如何用3秒完成车企供应链推演
qq_43696218
人工智能
一、BI+AI引领财务分析新纪元在财务数据分析领域,奥威BI+AI正以革命性的姿态颠覆传统。当金蝶、用友等工具仍深陷报表泥潭时,奥威BI+AI通过深度融合商业智能(BI)与人工智能(AI),实现了从滞后报表到实时洞察的飞跃。这不仅极大地提升了财务分析的效率,更为企业的战略决策提供了前所未有的精准支持。二、BI+AI的核心技术优势实时动态分析o奥威BI+AI摒弃了静态数据集,依托原始科目余额表实
- 【数据交易】全国数据交易所的发展现状
暴躁小师兄数据学院
数据治理区块链
全国数据交易所概述数据交易所是专门为数据资产(如数据集、数据产品)提供交易、流通和服务的平台,类似于传统金融交易所,但针对数据要素市场。在中国,随着数据被列为生产要素,国家积极推动数据交易所建设,以促进数据资源的高效配置和市场化流通。以下是中国主要的数据交易所及其现状。主要数据交易所列表上海数据交易所成立时间:2021年11月定位:中国首个国家级数据交易所,由上海市政府主导,旨在打造全球数据要素配
- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 结构化数据增强的生成式算法案例:客户交易数据增强
python游乐园
数据深度学习大数据算法学习
1基础信息1.1案例背景这是一个用于增强结构化客户交易数据的生成式算法。这种类型的数据增强在金融、电子商务等领域非常有用,可以帮助解决数据不平衡问题或在小数据集上提高模型性能。1.2问题定义给定原始交易数据集D={x₁,x₂,...,xₙ},其中每条记录包含:交易金额交易时间客户年龄客户收入水平交易类别地理位置是否为欺诈交易(标签)目标:生成与原始数据分布相似但多样化的新样本,同时保持字段间的合理
- 数据库技术演进史:从穿孔卡片到云原生
小李独爱秋
计算机那些事儿~数据库云原生mysql
一、数据库的定义与核心地位数据库(Database)是“长期存储在计算机内、有组织的、可共享的统一管理数据集合”,与芯片、操作系统并称IT系统三大核心。其核心价值在于:结构化存储:通过数据模型组织信息,解决文件系统冗余问题;高效访问:支持并发查询与事务处理;安全共享:权限控制保障数据安全。分类维度全景图:分类维度类型代表产品数据模型关系型(SQL)MySQL,Oracle,PostgreSQL非关
- ECharts 数据集(Dataset)
沐知全栈开发
开发语言
ECharts数据集(Dataset)引言ECharts是一个使用JavaScript实现的开源可视化库,它能够将数据通过丰富的图表形式展示出来。在ECharts中,数据集(Dataset)是一个非常重要的概念,它负责存储图表所需的数据。本文将详细介绍ECharts数据集(Dataset)的相关知识,包括其定义、作用、类型以及使用方法。数据集的定义数据集(Dataset)是ECharts中用于存储
- Python打卡:Day38
剑桥折刀s
python打卡python
知识点回顾:Dataset类的__getitem__和__len__方法(本质是python的特殊方法)Dataloader类minist手写数据集的了解@浙大疏锦行
- 基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)
QQ67658008
YOLO音视频qt桃子成熟水果成熟度检测系统
基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)文章目录调用示例加载预训练模型开始训练加载训练好的模型在验证集上评估加载训练好的模型文字及代码仅供参考。桃子成熟度分类检测数据集,主要用于桃子成熟度分类检测应用任务数据背景:模拟实际田间条件,涵盖多种可能影响桃子检测准确性的因素,如变化的自然光照强度、多果粘连现象以及由枝
- DAY 33 简单的神经网络
2401_84854050
python打卡神经网络深度学习人工智能
1.数据预处理(0)准备数据、划分数据#仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集fromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitimportnumpyasnp#加载鸢尾花数据集iris=load_iris()X=iris.data#特征数据y=iris.target
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- Java 根据分组key构建合并数据集
南国以南i
Javajava开发语言
文章目录前言背景总结前言请各大网友尊重本人原创知识分享,谨记本人博客:南国以南i、提示:以下是本篇文章正文内容,下面案例可供参考背景Java需要返回一组数据供前端展示,获取到的数据格式如下:List>varSummary存在多组数据,varSummary中map结构一致[{sub_product_name=生活费-生意贷,approval_result=其它,marital_state=3},{s
- 图14CLIP 模型在 “分布偏移场景” 下的鲁棒性优化策略|学习笔记
学渣67656
笔记人工智能
一、先明确:左图的核心对比维度左图的横轴是“模型在标准分布上的准确率”,纵轴是“模型在分布偏移数据集上的准确率”,本质是对比“不同模型/策略在“标准性能”与“鲁棒性”之间的权衡,图中每条曲线代表一类模型/策略的“标准性能-鲁棒性”趋势,而红色箭头标注的“AdapttoImageNet”是一种“干预策略”,作用于CLIP模型后,使其性能点落在对应曲线上。二、左图中6条曲线的含义(按图例颜色+模型类型
- 深入Python:实现FFT与DFT
weixin_42668301
本文还有配套的精品资源,点击获取简介:快速傅里叶变换(FFT)和离散傅里叶变换(DFT)是处理时域信号转换到频域的数字信号处理核心工具。本课程深入介绍FFT与DFT的原理及Python实现,涵盖从基本概念到使用numpy库进行信号处理的实战应用。学生将学习如何使用Python中的numpy库来执行DFT,掌握通过Cooley-Tukey算法实现的FFT来高效处理大型数据集。通过实际案例,理解如何分
- 数据库原理及应用
阿慧今天瘦了嘛
数据库原理及应用数据库oracle
习题11.1名词解释数据库(DB):数据库是指计算机的存储设备上合理存放相关联,有结构的数据集合数据库系统(DBS):是指在计算机系统中引进数据库和数据库管理系统后的系统数据库管理系统(DBMS):是一个操纵和管理数据库的大型软件,它由计算机程序构成,它是位于用户与操作系统之间的一层数据管理软件数据模型:是指现实世界数据和信息的模拟和抽象,用来描述数据,组织数据和对数据进行操作。概念数据模型:是独
- python pandas数据清洗
扶子
python开发语言经验分享pandas数据清洗
一、介绍:2024金砖python样题中数据清洗部分代码实现二、任务要求:数据集中有购药时间、社保卡号、商品编码、商品名称、销售数量、应收金额、实收金额几个字段,请你使用NumPy和Pandas按如下要求对数据进行清洗:1.购药时间就是销售时间,为了后续分析更好的理解字段,将"购药时间"改为"销售时间";2.任何一条数据中只要有一个缺失值就删除该条数据;3.将销售数量、应收金额、实收金额三列的数据
- 开源低代码平台测评:2025年Top 10工具对比
知识产权13937636601
计算机AI大模型
本文基于功能性、性能、社区生态与企业适配度四大维度,对2025年主流开源低代码平台进行系统性评测。通过对比Appsmith、ToolJet、Budibase等Top10工具,分析其在可视化开发、数据集成、多端交付等方面的技术差异。研究发现,头部平台已实现90%以上场景的无代码覆盖,并通过AI辅助生成与云原生架构显著提升开发效率。结论提出制造业、金融业等典型行业的选型建议,并预测未来低代码工具将深度
- 第37节:PyTorch数据加载与预处理
点我头像干啥
pytorch人工智能python
1.引言在深度学习项目中,数据加载与预处理是构建高效模型的关键环节。PyTorch作为当前最流行的深度学习框架之一,提供了一套完整且灵活的数据处理工具链。本文将全面介绍PyTorch中的数据加载与预处理机制,涵盖从基础概念到高级技巧的各个方面。2.PyTorch数据加载核心组件2.1Dataset类torch.utils.data.Dataset是PyTorch中所有数据集处理的抽象基类,代表数据
- Python打卡训练营-Day43-复习日
traMpo1ine
python
@浙大疏锦行作业kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化进阶:并拆分成多个文件
- 对 Boston Housing Dataset(波士顿房价数据集)数据分析
程序小K
数据分析数据分析数据挖掘
1.数据加载与初步检查importpandasaspdimportmatplotlib.pyplotaspltimportseabornassns#加载数据boston_df=pd.read_csv("boston_housing_data.csv")#查看前5行display(boston_df.head())#检查数据基本信息(列名、数据类型、非空值数量)print(boston_df.inf
- 深度学习应用于情感识别:利用YOLOv8进行AffectNet情感分类
YOLO实战营
深度学习YOLO分类人工智能目标检测目标跟踪数据挖掘
引言情感识别(EmotionRecognition)是计算机视觉和自然语言处理中的一个重要研究方向,广泛应用于人机交互、智能客服、心理健康监测、视频分析等领域。随着深度学习技术的发展,情感识别取得了显著进展,特别是在面部表情识别方面。面部表情作为人类情感的自然表现之一,能在很大程度上反映个体的情感状态。AffectNet数据集是一个广泛使用的情感识别数据集,它包含了大量带有标注情感标签的面部表情图
- 人脸识别python实现源码(功能丰富)
张沙姗
人脸识别python实现源码(功能丰富)去发现同类优质开源项目:https://gitcode.com/此仓库提供了一组基于Python的人脸识别源码,利用dlib库的先进面部识别功能构建而成,并具备深度学习特性。以下是对该资源的详细介绍:功能特点在Wild标记的LabeledFaces数据集上实现99.38%的准确度。提供简单的命令行工具,支持以下功能:在图像文件夹中找到出现的所有面孔。获取每个
- 如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割 深度学习遥感图像滑坡泥石流分割数据集的训练及应用
计算机C9硕士_算法工程师
YOLO深度学习人工智能
如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割深度学习遥感图像滑坡泥石流分割数据集的训练及应用文章目录遥感图像滑坡-泥石流分割数据集情况数据集概述类别统计总体统计注意事项✅一、安装CUDA驱动(Linux示例)✅二、安装Anaconda(Linux示例)✅三、创建Python虚拟环境并安装依赖✅四、数据集结构示例(遥感图像滑坡-泥石流分割)✅五、创建data.yaml文件(用于训练)✅六、
- 深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化
计算机C9硕士_算法工程师
深度学习目标检测YOLO
深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化文章目录1.环境设置2.数据准备3.模型训练4.推理与结果可视化推理代码示例5.构建可视化界面PyQt5GUI代码示例总结以下文字及代码仅供参考。树冠检测数据集的训练及推理1使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化等方面进行详细介绍。1.环境设置首先确保
- 6.26打卡
丁值心
机器学习小白从0到1人工智能深度学习机器学习python开发语言
@浙大疏锦行DAY55序列预测任务介绍知识点回顾1.序列预测介绍a.单步预测b.多步预测的2种方式2.序列数据的处理:滑动窗口3.多输入多输出任务的思路4.经典机器学习在序列任务上的劣势;以随机森林为例作业:手动构造类似的数据集(如cosx数据),观察不同的机器学习模型的差异#准备工作importnumpyasnpimportrandomimportosimportmatplotlib.pyplo
- Hadoop的部分用法
覃炳文20230322027
hadoophive大数据分布式
前言Hadoop是一个由Apache基金会开发的开源框架,它允许跨多个机器使用分布式处理大数据集。Hadoop的核心是HDFS(HadoopDistributedFileSystem)和MapReduce编程模型。1.Hadoop环境搭建在开始使用Hadoop之前,你需要搭建Hadoop环境。这通常包括安装Java、配置Hadoop环境变量、配置Hadoop的配置文件等步骤。1.1环境准备在开始安
- 中国外卖包装废弃物高精度网格图谱(Tif/Excel/Shp)
AI数据皮皮侠
人工智能大数据机器学习业界资讯分类excel
数据简介今天我们分享的数据是中国外卖包装废弃物高分辨率网格数据集,该数据集包含中国2018年1平方公里范围内产生的外卖包装废弃物总量的栅格数据以及各城市详细的外卖包装废弃物核算结果表格,我们将中国区域的数据裁剪成各省以及各市的区域,将各城市详细的外卖包装废弃物核算结果表整理成中文版,方便研究使用。该数据集通过高分辨率网格化方法量化中国外卖包装废弃物的空间分布,填补了精细化环境管理的技术空白,为“零
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多