Android图形系统(十一)-Choreographer

在Android4.1之后增加了Choreographer机制,用于同Vsync机制配合,统一动画、输入和绘制时机。本文以绘制为例来简单学习下Choreographer。

一、从绘制流程开始

ViewRootImpl的requestLayout开启绘制流程:

@Override
    public void requestLayout() {
        if (!mHandlingLayoutInLayoutRequest) {
            checkThread();//检查是否在主线程
            mLayoutRequested = true;//mLayoutRequested 是否measure和layout布局。
            scheduleTraversals();
        }
    }

    void scheduleTraversals() {
        if (!mTraversalScheduled) {//同一帧内不会多次调用遍历
            mTraversalScheduled = true;
            mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();//拦截同步Message
            //Choreographer回调,执行绘制操作
            mChoreographer.postCallback(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
        }
    }

这里主要关注两点:

postSyncBarrier : Handler 的同步屏障。它的作用是可以拦截 Looper 对同步消息的获取和分发,加入同步屏障之后,Looper 只会获取和处理异步消息,如果没有异步消息那么就会进入阻塞状态。也就是说,对View绘制渲染的处理操作可以优先处理(设置为异步消息)。

Choreographer: 编舞者。统一动画、输入和绘制时机。也是这章需要重点分析的内容。

二、Choreographer启动
public ViewRootImpl(Context context, Display display) {
    ...
    //获取Choreographer实例
    mChoreographer = Choreographer.getInstance();
    ...
}

frameworks\base\core\java\android\view\Choreographer.java

public static Choreographer getInstance() {
    return sThreadInstance.get();
}

private static final ThreadLocal sThreadInstance =
        new ThreadLocal() {
    @Override
    protected Choreographer initialValue() {
        Looper looper = Looper.myLooper();
        if (looper == null) {
            throw new IllegalStateException("The current thread must have a looper!");
        }
        return new Choreographer(looper);
    }
};

每一个Looper线程都有自己的Choreographer,其他线程发送的回调只能运行在对应Choreographer所属的Looper线程上

private Choreographer(Looper looper) {
   mLooper = looper;
   mHandler = new FrameHandler(looper);
   // 根据是否使用了VSYNC来创建一个FrameDisplayEventReceiver对象
   mDisplayEventReceiver = USE_VSYNC ? new FrameDisplayEventReceiver(looper) : null;
   mLastFrameTimeNanos = Long.MIN_VALUE;//是指上一次帧绘制时间点
   mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());//帧间时长,一般等于16.7ms
   // CALLBACK_LAST + 1 = 4,创建一个容量为4的CallbackQueue数组,用来存放4种不同的Callback
   mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];
   for (int i = 0; i <= CALLBACK_LAST; i++) {
       mCallbackQueues[i] = new CallbackQueue();
   }
}

Choreographer类中有一个Looper和一个FrameHandler变量。变量USE_VSYNC用于表示系统是否是用了Vsync同步机制,该值是通过读取系统属性debug.choreographer.vsync来获取的。如果系统使用了Vsync同步机制,则创建一个FrameDisplayEventReceiver对象用于请求并接收Vsync事件,最后Choreographer创建了一个大小为3的CallbackQueue队列数组,用于保存不同类型的Callback。

这里,不同类型的Callback包括如下4种:

public static final int CALLBACK_INPUT = 0; //输入
public static final int CALLBACK_ANIMATION = 1; //动画
public static final int CALLBACK_TRAVERSAL = 2; //视图绘制
public static final int CALLBACK_COMMIT = 3; //提交 ( 这一类型是在API level=23的时候添加的)
Android图形系统(十一)-Choreographer_第1张图片

CallbackQueue是一个容量为4的数组,每一个元素作为头指针,引出对应类型的链表,4种事件就是通过这4个链表来维护的。

而FrameHandler中主要处理三类消息:

private final class FrameHandler extends Handler {
   public FrameHandler(Looper looper) {
       super(looper);
   }

   @Override
   public void handleMessage(Message msg) {
       switch (msg.what) {
           case MSG_DO_FRAME:
               doFrame(System.nanoTime(), 0);
               break;
           case MSG_DO_SCHEDULE_VSYNC:
               doScheduleVsync();   // 请求VSYNC信号
               break;
           case MSG_DO_SCHEDULE_CALLBACK:
               doScheduleCallback(msg.arg1);
               break;
       }
   }
}
三、Choreographer执行流程
Android图形系统(十一)-Choreographer_第2张图片
i

Choreographer提供了两类添加回调的方式:postCallback 与 postFrameCallback,当然对应类型也包含delay的方法,算上其实有4个方法。

postCallback对应的:

public void postCallbackDelayed(int callbackType,
        Runnable action, Object token, long delayMillis) {
    if (action == null) {
        throw new IllegalArgumentException("action must not be null");
    }
    if (callbackType < 0 || callbackType > CALLBACK_LAST) {
        throw new IllegalArgumentException("callbackType is invalid");
    }
    postCallbackDelayedInternal(callbackType, action, token, delayMillis);
}

postFrameCallback对应的:

public void postFrameCallbackDelayed(FrameCallback callback, long delayMillis) {
    if (callback == null) {
        throw new IllegalArgumentException("callback must not be null");
    }
    postCallbackDelayedInternal(CALLBACK_ANIMATION,
            callback, FRAME_CALLBACK_TOKEN, delayMillis);
}

相比之下postCallback更灵活一点。两者最终都会调到:postCallbackDelayedInternal

private void postCallbackDelayedInternal(int callbackType,
       Object action, Object token, long delayMillis) {
   synchronized (mLock) {
       // 当前时间
       final long now = SystemClock.uptimeMillis();
       // 回调执行时间,为当前时间加上延迟的时间
       final long dueTime = now + delayMillis;
       // obtainCallbackLocked(long dueTime, Object action, Object token)会将传入的3个参数转换为CallbackRecord(具体请看源码,非主要部分,此处略过),然后CallbackQueue根据回调类型将CallbackRecord添加到链表上。
       mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);
       if (dueTime <= now) {
           // 如果delayMillis=0的话,dueTime=now,则会马上执行
           scheduleFrameLocked(now);
       } else {
           // 如果dueTime>now,则发送一个what为MSG_DO_SCHEDULE_CALLBACK类型的定时消息,等时间到了再处理,其最终处理也是执行scheduleFrameLocked(long now)方法
           Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
           msg.arg1 = callbackType;
           msg.setAsynchronous(true);
           mHandler.sendMessageAtTime(msg, dueTime);
       }
   }
}

mCallbackQueues先把对应的callback添加到链表上来,然后判断是否有延迟,如果没有则会马上执行scheduleFrameLocked,如果有,则发送一个what为MSG_DO_SCHEDULE_CALLBACK类型的定时消息,等时间到了再处理,其最终处理也是执行scheduleFrameLocked(long now)方法。

private void scheduleFrameLocked(long now) {
   if (!mFrameScheduled) {
       mFrameScheduled = true;
       if (USE_VSYNC) {
           // 如果使用了VSYNC,由系统值确定
           if (DEBUG_FRAMES) {
               Log.d(TAG, "Scheduling next frame on vsync.");
           }
           if (isRunningOnLooperThreadLocked()) {
               // 请求VSYNC信号,最终会调到Native层,Native处理完成后触发FrameDisplayEventReceiver的onVsync回调,回调中最后也会调用doFrame(long frameTimeNanos, int frame)方法
               scheduleVsyncLocked();
           } else {
               // 在UI线程上直接发送一个what=MSG_DO_SCHEDULE_VSYNC的消息,最终也会调到scheduleVsyncLocked()去请求VSYNC信号
               Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
               msg.setAsynchronous(true);
               mHandler.sendMessageAtFrontOfQueue(msg);
           }
       } else {
           // 没有使用VSYNC
           final long nextFrameTime = Math.max(
                   mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
           if (DEBUG_FRAMES) {
               Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
           }
           // 直接发送一个what=MSG_DO_FRAME的消息,消息处理时调用doFrame(long frameTimeNanos, int frame)方法
           Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
           msg.setAsynchronous(true);
           mHandler.sendMessageAtTime(msg, nextFrameTime);
       }
   }
}

这里首先判断USE_VSYNC,如果使用了VSYNC:走scheduleVsyncLocked,即请求VSYNC信号,最终调用doFrame,如果没使用VSYNC,则通过消息执行doFrame。

那么我们先简单了解下请求VSYNC信号的流程:

private void scheduleVsyncLocked() {
    mDisplayEventReceiver.scheduleVsync();
}
public void scheduleVsync() {
    if (mReceiverPtr == 0) {
        Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
                + "receiver has already been disposed.");
    } else {
        nativeScheduleVsync(mReceiverPtr);
    }
}

mDisplayEventReceiver 对应的是FrameDisplayEventReceiver,它继承自 DisplayEventReceiver , 主要是用来接收同步脉冲信号 VSYNC。scheduleVsync()方法通过底层nativeScheduleVsync()向SurfaceFlinger 服务注册,即在下一次脉冲接收后会调用 DisplayEventReceiver的dispatchVsync()方法。这里类似于订阅者模式,但是每次调用nativeScheduleVsync()方法都有且只有一次dispatchVsync()方法回调。

然后再看看接收VSYNC信号:

Android图形系统(十一)-Choreographer_第3张图片

底层向应用层发送VSYNC信号,java层通过dispatchVsync()接收,最后回调在FrameDisplayEventReceiver的onVsync

private final class FrameDisplayEventReceiver extends DisplayEventReceiver implements Runnable {
    private boolean mHavePendingVsync;
    private long mTimestampNanos;
    private int mFrame;
    @Override
    public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
        //忽略来自第二显示屏的Vsync
        if (builtInDisplayId != SurfaceControl.BUILT_IN_DISPLAY_ID_MAIN) {
            scheduleVsync();
            return;
        }
        ...
        mTimestampNanos = timestampNanos;
        mFrame = frame;
        //该消息的callback为当前对象FrameDisplayEventReceiver
        Message msg = Message.obtain(mHandler, this);
        msg.setAsynchronous(true);
        //此处mHandler为FrameHandler
        mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
    }
    @Override
    public void run() {
        mHavePendingVsync = false;
        doFrame(mTimestampNanos, mFrame); 
    }
}

可见onVsync()过程是通过FrameHandler向主线程Looper发送了一个自带callback的消息 callback为FrameDisplayEventReceiver。 当主线程Looper执行到该消息时,则调用FrameDisplayEventReceiver.run()方法,紧接着便是调用doFrame。

void doFrame(long frameTimeNanos, int frame) {
    final long startNanos;
    synchronized (mLock) {
        if (!mFrameScheduled) {
            return; // mFrameScheduled=false,则直接返回。
        }
        long intendedFrameTimeNanos = frameTimeNanos; //原本计划的绘帧时间点
        startNanos = System.nanoTime();//保存起始时间
        //由于Vsync事件处理采用的是异步方式,因此这里计算消息发送与函数调用开始之间所花费的时间
        final long jitterNanos = startNanos - frameTimeNanos;
        //如果线程处理该消息的时间超过了屏幕刷新周期
        if (jitterNanos >= mFrameIntervalNanos) {
            //计算函数调用期间所错过的帧数
            final long skippedFrames = jitterNanos / mFrameIntervalNanos;
            //当掉帧个数超过30,则输出相应log
            if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
                Log.i(TAG, "Skipped " + skippedFrames + " frames! "
                        + "The application may be doing too much work on its main thread.");
            }
            final long lastFrameOffset = jitterNanos % mFrameIntervalNanos;
            frameTimeNanos = startNanos - lastFrameOffset; //对齐帧的时间间隔
        }
       //如果frameTimeNanos小于一个屏幕刷新周期,则重新请求VSync信号
        if (frameTimeNanos < mLastFrameTimeNanos) {
            scheduleVsyncLocked();
            return;
        }
        mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos);
        mFrameScheduled = false;
        mLastFrameTimeNanos = frameTimeNanos;
    }
    try {
        Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
        //分别回调CALLBACK_INPUT、CALLBACK_ANIMATION、CALLBACK_TRAVERSAL事件
        mFrameInfo.markInputHandlingStart();
        doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);
        mFrameInfo.markAnimationsStart();
        doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);
        mFrameInfo.markPerformTraversalsStart();
        doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
        doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
    } finally {
        Trace.traceEnd(Trace.TRACE_TAG_VIEW);
    }
}

当Vsync事件到来时,顺序执行4种事件对应CallbackQueue队列中注册的回调。

void doCallbacks(int callbackType, long frameTimeNanos) {
    CallbackRecord callbacks;
    synchronized (mLock) {
        final long now = SystemClock.uptimeMillis();
        //从指定类型的CallbackQueue队列中查找执行时间到的CallbackRecord
        callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(now);
        if (callbacks == null) {
            return;
        }
        mCallbacksRunning = true;
    }
    try {
        //由于CallbackQueues是按时间先后顺序排序的,因此遍历执行所有时间到的CallbackRecord
        for (CallbackRecord c = callbacks; c != null; c = c.next) {
            c.run(frameTimeNanos);
        }
    } finally {
        synchronized (mLock) {
            mCallbacksRunning = false;
            do {
                final CallbackRecord next = callbacks.next;
                recycleCallbackLocked(callbacks);
                callbacks = next;
            } while (callbacks != null);
        }
    }
}

按时间顺序先后执行CallbackRecord对应的run方法

private static final class CallbackRecord {
    public CallbackRecord next;
    public long dueTime;
    public Object action; // Runnable or FrameCallback
    public Object token;
    public void run(long frameTimeNanos) {
        if (token == FRAME_CALLBACK_TOKEN) {
            ((FrameCallback)action).doFrame(frameTimeNanos);
        } else {
            ((Runnable)action).run();
        }
    }
}

接开篇讲的

 void scheduleTraversals() {
     ...
            mChoreographer.postCallback(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
        }

mTraversalRunnable对应:

final class TraversalRunnable implements Runnable {
   @Override
   public void run() {
       doTraversal();
   }
}

run方法被执行,所以doTraversal()被执行,开启View的绘制流程。

所以整个绘制过程总的流程如下所示:

Android图形系统(十一)-Choreographer_第4张图片

简单总结:

  • Choreographer支持4种类型事件:输入、绘制、动画、提交,并通过postCallback在对应需要同步vsync进行刷新处进行注册,等待回调。
  • Choreographer监听底层Vsync信号,一旦接收到回调信号,则通过doFrame统一对java层4种类型事件进行回调。

参考
https://blog.csdn.net/bluewindtalker/article/details/54017569
https://blog.csdn.net/qian520ao/article/details/80954626
http://gityuan.com/2017/02/25/choreographer/
https://www.jianshu.com/p/47c866f6fb67

你可能感兴趣的:(Android图形系统(十一)-Choreographer)