CF809E Surprise me!

题目传送门

分析:
我们要求
\(\frac{1}{n(n-1)}\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_{i}a_j)dist(i,j)\)
先看一下怎么求\(\varphi(a_{i}a_j)\)
回归欧拉函数本质的式子:
\(\varphi(xy)=xy\prod_{p|xy}(1-\frac{1}{p})\)
\(\varphi(x)\varphi(y)=xy\prod_{p|x}(1-\frac{1}{p})\prod_{p|y}(1-\frac{1}{p})\)
两式相除:

\(\frac{\varphi(x)\varphi(y)}{\varphi(xy)}=\frac{\prod_{p|x}(1-\frac{1}{p})\prod_{p|y}(1-\frac{1}{p})}{\prod_{p|xy}(1-\frac{1}{p})}\)

(感性)推理一下

\(~~~~\frac{\varphi(x)\varphi(y)}{\varphi(xy)}\)

\(=\prod_{p|gcd(x,y)}(1-\frac{1}{p})\)

\(=\frac{\varphi(gcd(x,y))}{gcd(x,y)}\)

所以

\(\varphi(xy)=\frac{\varphi(x)\varphi(y)gcd(x,y)}{\varphi(gcd(x,y))}\)

于是开始推式子:

\(~~~~\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_{i}a_j)dist(a_i,a_j)\)

\(=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{\varphi(a_i)\varphi(a_j)gcd(a_i,a_j)}{\varphi(gcd(a_i,a_j))}dist(i,j)\)

枚举\(gcd(a_i,a_j)=d\)

\(=\sum_{d=1}^{n}\frac{d}{varphi(d)}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(a_i,a_j)=d]\varphi(a_i)\varphi(a_j)dist(i,j)\)

\(f(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(a_i,a_j)=d]\varphi(a_i)\varphi(a_j)dist(i,j)\)
不好求
我们再令\(F(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}[d|gcd(a_i,a_j)]\varphi(a_i)\varphi(a_j)dist(i,j)\)
可以看出\(F(i)=\sum_{d|i}f(d)\)
于是乎\(f(i)=\sum_{d|i}\mu(\frac{i}{d})F(d)\)
我们知道\(F(d)\)后,便可以\(O(nlogn)\)的时间求出\(f(d)\)
考虑每一个\(d\),由于\(d|gcd(a_i,a_j)\),所以满足\(d|a_i\)的点都会加入,即\(\lfloor\frac{n}{d}\rfloor\)个点
总点数是\(O(nlogn)\)级别
对于每个\(d\),构建虚树,设其中有\(m\)个点,设\(v_i=\varphi(a_i)\)
\(F(d)=\sum_{i=1}^{m}\sum_{j=1}^{m}v_i v_j dist(i,j)\)
\(=\sum_{i=1}^{m}\sum_{j=1}^{m}v_i v_j (dpt(i)+dpt(j)-2dpt(LCA(i,j)))\)
展开
\(=\sum_{i=1}^{m}\sum_{j=1}^{m}v_i v_j dpt(i)+\sum_{i=1}^{m}\sum_{j=1}^{m}v_i v_j dpt(j)-2\sum_{i=1}^{m}\sum_{j=1}^{m}v_i v_j dpt(LCA(i,j))\)
前面俩其实等价
\(=2\sum_{i=1}^{m}\sum_{j=1}^{m}v_i v_j dpt(i)-2\sum_{i=1}^{m}\sum_{j=1}^{m}v_i v_j dpt(LCA(i,j))\)
前面的直接预处理可以算,后面的树形\(dp\)计算每个点为\(LCA\)时整棵子树的总和
于是这道题就解决了,复杂度\(O(nlog^{2}n)\)

一道很好(丧病)的数论大礼包+虚树+树形dp的题
写好了调半天

#include
#include
#include
#include
#include
#include
#include
#include
#include

#define maxn 400005
#define INF 0x3f3f3f3f
#define MOD 1000000007

using namespace std;

inline long long getint()
{
    long long num=0,flag=1;char c;
    while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
    while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
    return num*flag;
}

int n;
int a[maxn],id[maxn],pos[maxn],cur;
int F[maxn];
int pri[maxn],phi[maxn],mu[maxn],np[maxn],pcnt;
int fir[maxn],nxt[maxn],to[maxn],cnt;
int sz[maxn],son[maxn],dpt[maxn],fa[maxn],tp[maxn];
vectorG[maxn];
int p[maxn],stk[maxn],top;
int sum[maxn],f[maxn],vis[maxn];
int ans;

int ksm(int num,int k)
{
	int ret=1;
	for(;k;k>>=1,num=1ll*num*num%MOD)if(k&1)ret=1ll*ret*num%MOD;
	return ret;
}
void newnode(int u,int v)
{to[++cnt]=v,nxt[cnt]=fir[u],fir[u]=cnt;}
int upd(int x){return x

CF809E Surprise me!_第1张图片

你可能感兴趣的:(CF809E Surprise me!)