1、硬件准备:
S3C2440开发板一套(本人用的是JZ2440)
耳机一个
2、软件准备
移植Linux2.6内核,可以在S3C2440上面运行
开发按键驱动
开发WM9876声卡驱动程序
3、实现功能
按键1:播放、暂停
按键2:停止
按键3:上一曲
按键4:下一曲
4、实现按键驱动
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
static struct class *sixthdrv_class;
static struct class_device *sixthdrv_class_dev;
volatile unsigned long *gpfcon;
volatile unsigned long *gpfdat;
volatile unsigned long *gpgcon;
volatile unsigned long *gpgdat;
static struct timer_list buttons_timer;
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);
/* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */
static volatile int ev_press = 0;
static struct fasync_struct *button_async;
struct pin_desc{
unsigned int pin;
int key_val;
};
/* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */
/* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */
static int key_val;
struct pin_desc pins_desc[4] = {
{S3C2410_GPF0, 0},
{S3C2410_GPF2, 1},
{S3C2410_GPG3, 2},
{S3C2410_GPG11, 3},
};
static struct pin_desc *irq_pd;
//static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1
static DECLARE_MUTEX(button_lock); //定义互斥锁
/*
* 确定按键值
*/
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
/* 10ms后启动定时器 */
irq_pd = (struct pin_desc *)dev_id;
mod_timer(&buttons_timer, jiffies+HZ/100);
return IRQ_RETVAL(IRQ_HANDLED);
}
static int sixth_drv_open(struct inode *inode, struct file *file)
{
#if 0
if (!atomic_dec_and_test(&canopen))
{
atomic_inc(&canopen);
return -EBUSY;
}
#endif
if (file->f_flags & O_NONBLOCK)
{
if (down_trylock(&button_lock))
return -EBUSY;
}
else
{
/* 获取信号量 */
down(&button_lock);
}
/* 配置GPF0,2为输入引脚 */
/* 配置GPG3,11为输入引脚 */
request_irq(IRQ_EINT0, buttons_irq, IRQ_TYPE_EDGE_RISING, "S2", &pins_desc[0]);
request_irq(IRQ_EINT2, buttons_irq, IRQ_TYPE_EDGE_RISING, "S3", &pins_desc[1]);
request_irq(IRQ_EINT11, buttons_irq, IRQ_TYPE_EDGE_RISING, "S4", &pins_desc[2]);
request_irq(IRQ_EINT19, buttons_irq, IRQ_TYPE_EDGE_RISING, "S5", &pins_desc[3]);
return 0;
}
static int sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
//if (size != 1)
// return -EINVAL;
if (file->f_flags & O_NONBLOCK)
{
if (!ev_press)
return -EAGAIN;
}
else
{
/* 如果没有按键动作, 休眠 */
wait_event_interruptible(button_waitq, ev_press);
}
/* 如果有按键动作, 返回键值 */
copy_to_user(buf, &key_val, 4);
ev_press = 0;
return 4;
}
int sixth_drv_close(struct inode *inode, struct file *file)
{
//atomic_inc(&canopen);
free_irq(IRQ_EINT0, &pins_desc[0]);
free_irq(IRQ_EINT2, &pins_desc[1]);
free_irq(IRQ_EINT11, &pins_desc[2]);
free_irq(IRQ_EINT19, &pins_desc[3]);
up(&button_lock);
return 0;
}
static unsigned sixth_drv_poll(struct file *file, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait); // 不会立即休眠
if (ev_press)
mask |= POLLIN | POLLRDNORM;
return mask;
}
static int sixth_drv_fasync (int fd, struct file *filp, int on)
{
printk("driver: sixth_drv_fasync\n");
return fasync_helper (fd, filp, on, &button_async);
}
static struct file_operations sencod_drv_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
.open = sixth_drv_open,
.read = sixth_drv_read,
.release = sixth_drv_close,
.poll = sixth_drv_poll,
.fasync = sixth_drv_fasync,
};
int major;
static void buttons_timer_function(unsigned long data)
{
struct pin_desc * pindesc = irq_pd;
unsigned int pinval;
if (!pindesc)
return;
pinval = s3c2410_gpio_getpin(pindesc->pin);
if (pinval)
{
/* 松开 */
key_val = pindesc->key_val;
}
else
{
/* 按下 */
key_val = pindesc->key_val;
}
ev_press = 1; /* 表示中断发生了 */
wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */
kill_fasync (&button_async, SIGIO, POLL_IN);
}
static int sixth_drv_init(void)
{
init_timer(&buttons_timer);
buttons_timer.function = buttons_timer_function;
//buttons_timer.expires = 0;
add_timer(&buttons_timer);
major = register_chrdev(0, "sixth_drv", &sencod_drv_fops);
sixthdrv_class = class_create(THIS_MODULE, "sixth_drv");
/* 为了让mdev根据这些信息来创建设备节点 */
sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */
gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
gpfdat = gpfcon + 1;
gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16);
gpgdat = gpgcon + 1;
return 0;
}
static void sixth_drv_exit(void)
{
unregister_chrdev(major, "sixth_drv");
class_device_unregister(sixthdrv_class_dev);
class_destroy(sixthdrv_class);
iounmap(gpfcon);
iounmap(gpgcon);
return 0;
}
module_init(sixth_drv_init);
module_exit(sixth_drv_exit);
MODULE_LICENSE("GPL");
5、Makefile编写
KERN_DIR = /work/system/linux-2.6.22.6
all:
make -C $(KERN_DIR) M=`pwd` modules
clean:
make -C $(KERN_DIR) M=`pwd` modules clean
rm -rf modules.order
obj-m += buttons.o
6、WM9876驱动程序
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define PFX "s3c2410-uda1341-superlp: "
#define MAX_DMA_CHANNELS 0
/* The S3C2410 has four internal DMA channels. */
#define MAX_S3C2410_DMA_CHANNELS S3C2410_DMA_CHANNELS
#define DMA_BUF_WR 1
#define DMA_BUF_RD 0
#define dma_wrreg(chan, reg, val) __raw_writel((val), (chan)->regs + (reg))
static struct clk *iis_clock;
static void __iomem *iis_base;
static struct s3c2410_dma_client s3c2410iis_dma_out= {
.name = "I2SSDO",
};
static struct s3c2410_dma_client s3c2410iis_dma_in = {
.name = "I2SSDI",
};
#ifdef DEBUG
#define DPRINTK printk
#else
#define DPRINTK( x... )
#endif
static void init_s3c2410_iis_bus_rx(void);
static void init_s3c2410_iis_bus_tx(void);
#define DEF_VOLUME 65
/* UDA1341 Register bits */
#define UDA1341_ADDR 0x14
#define UDA1341_REG_DATA0 (UDA1341_ADDR + 0)
#define UDA1341_REG_STATUS (UDA1341_ADDR + 2)
/* status control */
#define STAT0 (0x00)
#define STAT0_RST (1 << 6)
#define STAT0_SC_MASK (3 << 4)
#define STAT0_SC_512FS (0 << 4)
#define STAT0_SC_384FS (1 << 4)
#define STAT0_SC_256FS (2 << 4)
#define STAT0_IF_MASK (7 << 1)
#define STAT0_IF_I2S (0 << 1)
#define STAT0_IF_LSB16 (1 << 1)
#define STAT0_IF_LSB18 (2 << 1)
#define STAT0_IF_LSB20 (3 << 1)
#define STAT0_IF_MSB (4 << 1)
#define STAT0_IF_LSB16MSB (5 << 1)
#define STAT0_IF_LSB18MSB (6 << 1)
#define STAT0_IF_LSB20MSB (7 << 1)
#define STAT0_DC_FILTER (1 << 0)
#define STAT0_DC_NO_FILTER (0 << 0)
#define STAT1 (0x80)
#define STAT1_DAC_GAIN (1 << 6) /* gain of DAC */
#define STAT1_ADC_GAIN (1 << 5) /* gain of ADC */
#define STAT1_ADC_POL (1 << 4) /* polarity of ADC */
#define STAT1_DAC_POL (1 << 3) /* polarity of DAC */
#define STAT1_DBL_SPD (1 << 2) /* double speed playback */
#define STAT1_ADC_ON (1 << 1) /* ADC powered */
#define STAT1_DAC_ON (1 << 0) /* DAC powered */
/* data0 direct control */
#define DATA0 (0x00)
#define DATA0_VOLUME_MASK (0x3f)
#define DATA0_VOLUME(x) (x)
#define DATA1 (0x40)
#define DATA1_BASS(x) ((x) << 2)
#define DATA1_BASS_MASK (15 << 2)
#define DATA1_TREBLE(x) ((x))
#define DATA1_TREBLE_MASK (3)
#define DATA2 (0x80)
#define DATA2_PEAKAFTER (0x1 << 5)
#define DATA2_DEEMP_NONE (0x0 << 3)
#define DATA2_DEEMP_32KHz (0x1 << 3)
#define DATA2_DEEMP_44KHz (0x2 << 3)
#define DATA2_DEEMP_48KHz (0x3 << 3)
#define DATA2_MUTE (0x1 << 2)
#define DATA2_FILTER_FLAT (0x0 << 0)
#define DATA2_FILTER_MIN (0x1 << 0)
#define DATA2_FILTER_MAX (0x3 << 0)
/* data0 extend control */
#define EXTADDR(n) (0xc0 | (n))
#define EXTDATA(d) (0xe0 | (d))
#define EXT0 0
#define EXT0_CH1_GAIN(x) (x)
#define EXT1 1
#define EXT1_CH2_GAIN(x) (x)
#define EXT2 2
#define EXT2_MIC_GAIN_MASK (7 << 2)
#define EXT2_MIC_GAIN(x) ((x) << 2)
#define EXT2_MIXMODE_DOUBLEDIFF (0)
#define EXT2_MIXMODE_CH1 (1)
#define EXT2_MIXMODE_CH2 (2)
#define EXT2_MIXMODE_MIX (3)
#define EXT4 4
#define EXT4_AGC_ENABLE (1 << 4)
#define EXT4_INPUT_GAIN_MASK (3)
#define EXT4_INPUT_GAIN(x) ((x) & 3)
#define EXT5 5
#define EXT5_INPUT_GAIN(x) ((x) >> 2)
#define EXT6 6
#define EXT6_AGC_CONSTANT_MASK (7 << 2)
#define EXT6_AGC_CONSTANT(x) ((x) << 2)
#define EXT6_AGC_LEVEL_MASK (3)
#define EXT6_AGC_LEVEL(x) (x)
#define AUDIO_NAME "UDA1341"
#define AUDIO_NAME_VERBOSE "UDA1341 audio driver"
#define AUDIO_FMT_MASK (AFMT_S16_LE)
#define AUDIO_FMT_DEFAULT (AFMT_S16_LE)
#define AUDIO_CHANNELS_DEFAULT 2
#define AUDIO_RATE_DEFAULT 44100
#define AUDIO_NBFRAGS_DEFAULT 8
#define AUDIO_FRAGSIZE_DEFAULT 8192
#define S_CLOCK_FREQ 384
#define PCM_ABS(a) (a < 0 ? -a : a)
typedef struct {
int size; /* buffer size */
char *start; /* point to actual buffer */
dma_addr_t dma_addr; /* physical buffer address */
struct semaphore sem; /* down before touching the buffer */
int master; /* owner for buffer allocation, contain size when true */
} audio_buf_t;
typedef struct {
audio_buf_t *buffers; /* pointer to audio buffer structures */
audio_buf_t *buf; /* current buffer used by read/write */
u_int buf_idx; /* index for the pointer above */
u_int fragsize; /* fragment i.e. buffer size */
u_int nbfrags; /* nbr of fragments */
dmach_t dma_ch; /* DMA channel (channel2 for audio) */
u_int dma_ok;
} audio_stream_t;
static audio_stream_t output_stream;
static audio_stream_t input_stream; /* input */
#define NEXT_BUF(_s_,_b_) { \
(_s_)->_b_##_idx++; \
(_s_)->_b_##_idx %= (_s_)->nbfrags; \
(_s_)->_b_ = (_s_)->buffers + (_s_)->_b_##_idx; }
static u_int audio_rate;
static int audio_channels;
static int audio_fmt;
static u_int audio_fragsize;
static u_int audio_nbfrags;
static int audio_rd_refcount;
static int audio_wr_refcount;
#define audio_active (audio_rd_refcount | audio_wr_refcount)
static int audio_dev_dsp;
static int audio_dev_mixer;
static int audio_mix_modcnt;
static int uda1341_volume;
//static u8 uda_sampling;
static int uda1341_boost;
static int mixer_igain=0x4; /* -6db*/
static void wm8976_write_reg(unsigned char reg, unsigned int data)
{
int i;
unsigned long flags;
unsigned short val = (reg << 9) | (data & 0x1ff);
s3c2410_gpio_setpin(S3C2410_GPB2,1);
s3c2410_gpio_setpin(S3C2410_GPB3,1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
local_irq_save(flags);
for (i = 0; i < 16; i++){
if (val & (1<<15))
{
s3c2410_gpio_setpin(S3C2410_GPB4,0);
s3c2410_gpio_setpin(S3C2410_GPB3,1);
udelay(1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
}
else
{
s3c2410_gpio_setpin(S3C2410_GPB4,0);
s3c2410_gpio_setpin(S3C2410_GPB3,0);
udelay(1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
}
val = val << 1;
}
s3c2410_gpio_setpin(S3C2410_GPB2,0);
udelay(1);
s3c2410_gpio_setpin(S3C2410_GPB2,1);
s3c2410_gpio_setpin(S3C2410_GPB3,1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
local_irq_restore(flags);
}
static void uda1341_l3_address(u8 data)
{
int i;
unsigned long flags;
local_irq_save(flags);
// write_gpio_bit(GPIO_L3MODE, 0);
s3c2410_gpio_setpin(S3C2410_GPB2,0);
// write_gpio_bit(GPIO_L3CLOCK, 1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
udelay(1);
for (i = 0; i < 8; i++) {
if (data & 0x1) {
s3c2410_gpio_setpin(S3C2410_GPB4,0);
s3c2410_gpio_setpin(S3C2410_GPB3,1);
udelay(1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
} else {
s3c2410_gpio_setpin(S3C2410_GPB4,0);
s3c2410_gpio_setpin(S3C2410_GPB3,0);
udelay(1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
}
data >>= 1;
}
s3c2410_gpio_setpin(S3C2410_GPB2,1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
local_irq_restore(flags);
}
static void uda1341_l3_data(u8 data)
{
int i;
unsigned long flags;
local_irq_save(flags);
udelay(1);
for (i = 0; i < 8; i++) {
if (data & 0x1) {
s3c2410_gpio_setpin(S3C2410_GPB4,0);
s3c2410_gpio_setpin(S3C2410_GPB3,1);
udelay(1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
} else {
s3c2410_gpio_setpin(S3C2410_GPB4,0);
s3c2410_gpio_setpin(S3C2410_GPB3,0);
udelay(1);
s3c2410_gpio_setpin(S3C2410_GPB4,1);
}
data >>= 1;
}
local_irq_restore(flags);
}
static void audio_clear_buf(audio_stream_t * s)
{
DPRINTK("audio_clear_buf\n");
if(s->dma_ok) s3c2410_dma_ctrl(s->dma_ch, S3C2410_DMAOP_FLUSH);
if (s->buffers) {
int frag;
for (frag = 0; frag < s->nbfrags; frag++) {
if (!s->buffers[frag].master)
continue;
dma_free_coherent(NULL,
s->buffers[frag].master,
s->buffers[frag].start,
s->buffers[frag].dma_addr);
}
kfree(s->buffers);
s->buffers = NULL;
}
s->buf_idx = 0;
s->buf = NULL;
}
static int audio_setup_buf(audio_stream_t * s)
{
int frag;
int dmasize = 0;
char *dmabuf = 0;
dma_addr_t dmaphys = 0;
if (s->buffers)
return -EBUSY;
s->nbfrags = audio_nbfrags;
s->fragsize = audio_fragsize;
s->buffers = (audio_buf_t *)
kmalloc(sizeof(audio_buf_t) * s->nbfrags, GFP_KERNEL);
if (!s->buffers)
goto err;
memset(s->buffers, 0, sizeof(audio_buf_t) * s->nbfrags);
for (frag = 0; frag < s->nbfrags; frag++) {
audio_buf_t *b = &s->buffers[frag];
if (!dmasize) {
dmasize = (s->nbfrags - frag) * s->fragsize;
do {
dmabuf = dma_alloc_coherent(NULL, dmasize, &dmaphys, GFP_KERNEL|GFP_DMA);
if (!dmabuf)
dmasize -= s->fragsize;
} while (!dmabuf && dmasize);
if (!dmabuf)
goto err;
b->master = dmasize;
}
b->start = dmabuf;
b->dma_addr = dmaphys;
sema_init(&b->sem, 1);
DPRINTK("buf %d: start %p dma %d\n", frag, b->start, b->dma_addr);
dmabuf += s->fragsize;
dmaphys += s->fragsize;
dmasize -= s->fragsize;
}
s->buf_idx = 0;
s->buf = &s->buffers[0];
return 0;
err:
printk(AUDIO_NAME ": unable to allocate audio memory\n ");
audio_clear_buf(s);
return -ENOMEM;
}
static void audio_dmaout_done_callback(struct s3c2410_dma_chan *ch, void *buf, int size,
enum s3c2410_dma_buffresult result)
{
audio_buf_t *b = (audio_buf_t *) buf;
up(&b->sem);
wake_up(&b->sem.wait);
}
static void audio_dmain_done_callback(struct s3c2410_dma_chan *ch, void *buf, int size,
enum s3c2410_dma_buffresult result)
{
audio_buf_t *b = (audio_buf_t *) buf;
b->size = size;
up(&b->sem);
wake_up(&b->sem.wait);
}
/* using when write */
static int audio_sync(struct file *file)
{
audio_stream_t *s = &output_stream;
audio_buf_t *b = s->buf;
DPRINTK("audio_sync\n");
if (!s->buffers)
return 0;
if (b->size != 0) {
down(&b->sem);
s3c2410_dma_enqueue(s->dma_ch, (void *) b, b->dma_addr, b->size);
b->size = 0;
NEXT_BUF(s, buf);
}
b = s->buffers + ((s->nbfrags + s->buf_idx - 1) % s->nbfrags);
if (down_interruptible(&b->sem))
return -EINTR;
up(&b->sem);
return 0;
}
static inline int copy_from_user_mono_stereo(char *to, const char *from, int count)
{
u_int *dst = (u_int *)to;
const char *end = from + count;
if (access_ok(VERIFY_READ, from, count))
return -EFAULT;
if ((int)from & 0x2) {
u_int v;
__get_user(v, (const u_short *)from); from += 2;
*dst++ = v | (v << 16);
}
while (from < end-2) {
u_int v, x, y;
__get_user(v, (const u_int *)from); from += 4;
x = v << 16;
x |= x >> 16;
y = v >> 16;
y |= y << 16;
*dst++ = x;
*dst++ = y;
}
if (from < end) {
u_int v;
__get_user(v, (const u_short *)from);
*dst = v | (v << 16);
}
return 0;
}
static ssize_t smdk2410_audio_write(struct file *file, const char *buffer,
size_t count, loff_t * ppos)
{
const char *buffer0 = buffer;
audio_stream_t *s = &output_stream;
int chunksize, ret = 0;
DPRINTK("audio_write : start count=%d\n", count);
switch (file->f_flags & O_ACCMODE) {
case O_WRONLY:
case O_RDWR:
break;
default:
return -EPERM;
}
if (!s->buffers && audio_setup_buf(s))
return -ENOMEM;
count &= ~0x03;
while (count > 0) {
audio_buf_t *b = s->buf;
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
if (down_trylock(&b->sem))
break;
} else {
ret = -ERESTARTSYS;
if (down_interruptible(&b->sem))
break;
}
if (audio_channels == 2) {
chunksize = s->fragsize - b->size;
if (chunksize > count)
chunksize = count;
DPRINTK("write %d to %d\n", chunksize, s->buf_idx);
if (copy_from_user(b->start + b->size, buffer, chunksize)) {
up(&b->sem);
return -EFAULT;
}
b->size += chunksize;
} else {
chunksize = (s->fragsize - b->size) >> 1;
if (chunksize > count)
chunksize = count;
DPRINTK("write %d to %d\n", chunksize*2, s->buf_idx);
if (copy_from_user_mono_stereo(b->start + b->size,
buffer, chunksize)) {
up(&b->sem);
return -EFAULT;
}
b->size += chunksize*2;
}
buffer += chunksize;
count -= chunksize;
if (b->size < s->fragsize) {
up(&b->sem);
break;
}
if((ret = s3c2410_dma_enqueue(s->dma_ch, (void *) b, b->dma_addr, b->size))) {
printk(PFX"dma enqueue failed.\n");
return ret;
}
b->size = 0;
NEXT_BUF(s, buf);
}
if ((buffer - buffer0))
ret = buffer - buffer0;
DPRINTK("audio_write : end count=%d\n\n", ret);
return ret;
}
static ssize_t smdk2410_audio_read(struct file *file, char *buffer,
size_t count, loff_t * ppos)
{
const char *buffer0 = buffer;
audio_stream_t *s = &input_stream;
int chunksize, ret = 0;
DPRINTK("audio_read: count=%d\n", count);
/*
if (ppos != &file->f_pos)
return -ESPIPE;
*/
if (!s->buffers) {
int i;
if (audio_setup_buf(s))
return -ENOMEM;
for (i = 0; i < s->nbfrags; i++) {
audio_buf_t *b = s->buf;
down(&b->sem);
s3c2410_dma_enqueue(s->dma_ch, (void *) b, b->dma_addr, s->fragsize);
NEXT_BUF(s, buf);
}
}
while (count > 0) {
audio_buf_t *b = s->buf;
/* Wait for a buffer to become full */
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
if (down_trylock(&b->sem))
break;
} else {
ret = -ERESTARTSYS;
if (down_interruptible(&b->sem))
break;
}
chunksize = b->size;
if (chunksize > count)
chunksize = count;
DPRINTK("read %d from %d\n", chunksize, s->buf_idx);
if (copy_to_user(buffer, b->start + s->fragsize - b->size,
chunksize)) {
up(&b->sem);
return -EFAULT;
}
b->size -= chunksize;
buffer += chunksize;
count -= chunksize;
if (b->size > 0) {
up(&b->sem);
break;
}
/* Make current buffer available for DMA again */
s3c2410_dma_enqueue(s->dma_ch, (void *) b, b->dma_addr, s->fragsize);
NEXT_BUF(s, buf);
}
if ((buffer - buffer0))
ret = buffer - buffer0;
// DPRINTK("audio_read: return=%d\n", ret);
return ret;
}
static unsigned int smdk2410_audio_poll(struct file *file,
struct poll_table_struct *wait)
{
unsigned int mask = 0;
int i;
DPRINTK("audio_poll(): mode=%s\n",
(file->f_mode & FMODE_WRITE) ? "w" : "");
if (file->f_mode & FMODE_READ) {
if (!input_stream.buffers && audio_setup_buf(&input_stream))
return -ENOMEM;
poll_wait(file, &input_stream.buf->sem.wait, wait);
for (i = 0; i < input_stream.nbfrags; i++) {
if (atomic_read(&input_stream.buffers[i].sem.count) > 0)
mask |= POLLIN | POLLWRNORM;
break;
}
}
if (file->f_mode & FMODE_WRITE) {
if (!output_stream.buffers && audio_setup_buf(&output_stream))
return -ENOMEM;
poll_wait(file, &output_stream.buf->sem.wait, wait);
for (i = 0; i < output_stream.nbfrags; i++) {
if (atomic_read(&output_stream.buffers[i].sem.count) > 0)
mask |= POLLOUT | POLLWRNORM;
break;
}
}
DPRINTK("audio_poll() returned mask of %s\n",
(mask & POLLOUT) ? "w" : "");
return mask;
}
static loff_t smdk2410_audio_llseek(struct file *file, loff_t offset,
int origin)
{
return -ESPIPE;
}
static int smdk2410_mixer_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int ret;
long val = 0;
switch (cmd) {
case SOUND_MIXER_INFO:
{
mixer_info info;
strncpy(info.id, "UDA1341", sizeof(info.id));
strncpy(info.name,"Philips UDA1341", sizeof(info.name));
info.modify_counter = audio_mix_modcnt;
return copy_to_user((void *)arg, &info, sizeof(info));
}
case SOUND_OLD_MIXER_INFO:
{
_old_mixer_info info;
strncpy(info.id, "UDA1341", sizeof(info.id));
strncpy(info.name,"Philips UDA1341", sizeof(info.name));
return copy_to_user((void *)arg, &info, sizeof(info));
}
case SOUND_MIXER_READ_STEREODEVS:
return put_user(0, (long *) arg);
case SOUND_MIXER_READ_CAPS:
val = SOUND_CAP_EXCL_INPUT;
return put_user(val, (long *) arg);
case SOUND_MIXER_WRITE_VOLUME:
ret = get_user(val, (long *) arg);
if (ret)
return ret;
/* ioctl: val越大表示音量越大, 0-最小, 100-最大
* UDA1341: 寄存器的值越小音量越大
* WM8976: 52,53号寄存器bit[5:0]表示音量, 值越大音量越大, 0-63
*/
uda1341_volume = (((val & 0xff) + 1) * 63) / 100;
wm8976_write_reg(52, (1<<8)|uda1341_volume);
wm8976_write_reg(53, (1<<8)|uda1341_volume);
//uda1341_l3_address(UDA1341_REG_DATA0);
//uda1341_l3_data(uda1341_volume);
break;
case SOUND_MIXER_READ_VOLUME:
val = (uda1341_volume * 100) / 63;
return put_user(val, (long *) arg);
case SOUND_MIXER_READ_IGAIN:
val = ((31- mixer_igain) * 100) / 31;
return put_user(val, (int *) arg);
case SOUND_MIXER_WRITE_IGAIN:
ret = get_user(val, (int *) arg);
if (ret)
return ret;
mixer_igain = 31 - (val * 31 / 100);
/* use mixer gain channel 1*/
//uda1341_l3_address(UDA1341_REG_DATA0);
//uda1341_l3_data(EXTADDR(EXT0));
//uda1341_l3_data(EXTDATA(EXT0_CH1_GAIN(mixer_igain)));
break;
default:
DPRINTK("mixer ioctl %u unknown\n", cmd);
return -ENOSYS;
}
audio_mix_modcnt++;
return 0;
}
static int iispsr_value(int s_bit_clock, int sample_rate)
{
int i, prescaler = 0;
unsigned long tmpval;
unsigned long tmpval384;
unsigned long tmpval384min = 0xffff;
tmpval384 = clk_get_rate(iis_clock) / s_bit_clock;
// tmpval384 = s3c2410_get_bus_clk(GET_PCLK) / s_bit_clock;
for (i = 0; i < 32; i++) {
tmpval = tmpval384/(i+1);
if (PCM_ABS((sample_rate - tmpval)) < tmpval384min) {
tmpval384min = PCM_ABS((sample_rate - tmpval));
prescaler = i;
}
}
DPRINTK("prescaler = %d\n", prescaler);
return prescaler;
}
static long audio_set_dsp_speed(long val)
{
unsigned int prescaler;
prescaler=(IISPSR_A(iispsr_value(S_CLOCK_FREQ, val))
| IISPSR_B(iispsr_value(S_CLOCK_FREQ, val)));
__raw_writel(prescaler, iis_base + S3C2410_IISPSR);
printk(PFX "audio_set_dsp_speed:%ld prescaler:%i\n",val,prescaler);
return (audio_rate = val);
}
static int smdk2410_audio_ioctl(struct inode *inode, struct file *file,
uint cmd, ulong arg)
{
long val;
switch (cmd) {
case SNDCTL_DSP_SETFMT:
get_user(val, (long *) arg);
if (val & AUDIO_FMT_MASK) {
audio_fmt = val;
break;
} else
return -EINVAL;
case SNDCTL_DSP_CHANNELS:
case SNDCTL_DSP_STEREO:
get_user(val, (long *) arg);
if (cmd == SNDCTL_DSP_STEREO)
val = val ? 2 : 1;
if (val != 1 && val != 2)
return -EINVAL;
audio_channels = val;
break;
case SOUND_PCM_READ_CHANNELS:
put_user(audio_channels, (long *) arg);
break;
case SNDCTL_DSP_SPEED:
get_user(val, (long *) arg);
val = audio_set_dsp_speed(val);
if (val < 0)
return -EINVAL;
put_user(val, (long *) arg);
break;
case SOUND_PCM_READ_RATE:
put_user(audio_rate, (long *) arg);
break;
case SNDCTL_DSP_GETFMTS:
put_user(AUDIO_FMT_MASK, (long *) arg);
break;
case SNDCTL_DSP_GETBLKSIZE:
if(file->f_mode & FMODE_WRITE)
return put_user(audio_fragsize, (long *) arg);
else
return put_user(audio_fragsize, (int *) arg);
case SNDCTL_DSP_SETFRAGMENT:
if (file->f_mode & FMODE_WRITE) {
if (output_stream.buffers)
return -EBUSY;
get_user(val, (long *) arg);
audio_fragsize = 1 << (val & 0xFFFF);
if (audio_fragsize < 16)
audio_fragsize = 16;
if (audio_fragsize > 16384)
audio_fragsize = 16384;
audio_nbfrags = (val >> 16) & 0x7FFF;
if (audio_nbfrags < 2)
audio_nbfrags = 2;
if (audio_nbfrags * audio_fragsize > 128 * 1024)
audio_nbfrags = 128 * 1024 / audio_fragsize;
if (audio_setup_buf(&output_stream))
return -ENOMEM;
}
if (file->f_mode & FMODE_READ) {
if (input_stream.buffers)
return -EBUSY;
get_user(val, (int *) arg);
audio_fragsize = 1 << (val & 0xFFFF);
if (audio_fragsize < 16)
audio_fragsize = 16;
if (audio_fragsize > 16384)
audio_fragsize = 16384;
audio_nbfrags = (val >> 16) & 0x7FFF;
if (audio_nbfrags < 2)
audio_nbfrags = 2;
if (audio_nbfrags * audio_fragsize > 128 * 1024)
audio_nbfrags = 128 * 1024 / audio_fragsize;
if (audio_setup_buf(&input_stream))
return -ENOMEM;
}
break;
case SNDCTL_DSP_SYNC:
return audio_sync(file);
case SNDCTL_DSP_GETOSPACE:
{
audio_stream_t *s = &output_stream;
audio_buf_info *inf = (audio_buf_info *) arg;
int err = access_ok(VERIFY_WRITE, inf, sizeof(*inf));
int i;
int frags = 0, bytes = 0;
if (err)
return err;
for (i = 0; i < s->nbfrags; i++) {
if (atomic_read(&s->buffers[i].sem.count) > 0) {
if (s->buffers[i].size == 0) frags++;
bytes += s->fragsize - s->buffers[i].size;
}
}
put_user(frags, &inf->fragments);
put_user(s->nbfrags, &inf->fragstotal);
put_user(s->fragsize, &inf->fragsize);
put_user(bytes, &inf->bytes);
break;
}
case SNDCTL_DSP_GETISPACE:
{
audio_stream_t *s = &input_stream;
audio_buf_info *inf = (audio_buf_info *) arg;
int err = access_ok(VERIFY_WRITE, inf, sizeof(*inf));
int i;
int frags = 0, bytes = 0;
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (err)
return err;
for(i = 0; i < s->nbfrags; i++){
if (atomic_read(&s->buffers[i].sem.count) > 0)
{
if (s->buffers[i].size == s->fragsize)
frags++;
bytes += s->buffers[i].size;
}
}
put_user(frags, &inf->fragments);
put_user(s->nbfrags, &inf->fragstotal);
put_user(s->fragsize, &inf->fragsize);
put_user(bytes, &inf->bytes);
break;
}
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_READ) {
audio_clear_buf(&input_stream);
}
if (file->f_mode & FMODE_WRITE) {
audio_clear_buf(&output_stream);
}
return 0;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_POST:
case SNDCTL_DSP_SUBDIVIDE:
case SNDCTL_DSP_GETCAPS:
case SNDCTL_DSP_GETTRIGGER:
case SNDCTL_DSP_SETTRIGGER:
case SNDCTL_DSP_GETIPTR:
case SNDCTL_DSP_GETOPTR:
case SNDCTL_DSP_MAPINBUF:
case SNDCTL_DSP_MAPOUTBUF:
case SNDCTL_DSP_SETSYNCRO:
case SNDCTL_DSP_SETDUPLEX:
return -ENOSYS;
default:
return smdk2410_mixer_ioctl(inode, file, cmd, arg);
}
return 0;
}
static int smdk2410_audio_open(struct inode *inode, struct file *file)
{
int cold = !audio_active;
DPRINTK("audio_open\n");
if ((file->f_flags & O_ACCMODE) == O_RDONLY) {
if (audio_rd_refcount || audio_wr_refcount)
return -EBUSY;
audio_rd_refcount++;
} else if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
if (audio_wr_refcount)
return -EBUSY;
audio_wr_refcount++;
} else if ((file->f_flags & O_ACCMODE) == O_RDWR) {
if (audio_rd_refcount || audio_wr_refcount)
return -EBUSY;
audio_rd_refcount++;
audio_wr_refcount++;
} else
return -EINVAL;
if (cold) {
audio_rate = AUDIO_RATE_DEFAULT;
audio_channels = AUDIO_CHANNELS_DEFAULT;
audio_fragsize = AUDIO_FRAGSIZE_DEFAULT;
audio_nbfrags = AUDIO_NBFRAGS_DEFAULT;
if ((file->f_mode & FMODE_WRITE)){
init_s3c2410_iis_bus_tx();
audio_clear_buf(&output_stream);
}
if ((file->f_mode & FMODE_READ)){
init_s3c2410_iis_bus_rx();
audio_clear_buf(&input_stream);
}
}
return 0;
}
static int smdk2410_mixer_open(struct inode *inode, struct file *file)
{
return 0;
}
static int smdk2410_audio_release(struct inode *inode, struct file *file)
{
DPRINTK("audio_release\n");
if (file->f_mode & FMODE_READ) {
if (audio_rd_refcount == 1)
audio_clear_buf(&input_stream);
audio_rd_refcount = 0;
}
if(file->f_mode & FMODE_WRITE) {
if (audio_wr_refcount == 1) {
audio_sync(file);
audio_clear_buf(&output_stream);
audio_wr_refcount = 0;
}
}
return 0;
}
static int smdk2410_mixer_release(struct inode *inode, struct file *file)
{
return 0;
}
static struct file_operations smdk2410_audio_fops = {
llseek: smdk2410_audio_llseek,
write: smdk2410_audio_write,
read: smdk2410_audio_read,
poll: smdk2410_audio_poll,
ioctl: smdk2410_audio_ioctl,
open: smdk2410_audio_open,
release: smdk2410_audio_release
};
static struct file_operations smdk2410_mixer_fops = {
ioctl: smdk2410_mixer_ioctl,
open: smdk2410_mixer_open,
release: smdk2410_mixer_release
};
static void init_wm8976(void)
{
uda1341_volume = 57;
uda1341_boost = 0;
/* software reset */
wm8976_write_reg(0, 0);
/* OUT2的左/右声道打开
* 左/右通道输出混音打开
* 左/右DAC打开
*/
wm8976_write_reg(0x3, 0x6f);
wm8976_write_reg(0x1, 0x1f);//biasen,BUFIOEN.VMIDSEL=11b
wm8976_write_reg(0x2, 0x185);//ROUT1EN LOUT1EN, inpu PGA enable ,ADC enable
wm8976_write_reg(0x6, 0x0);//SYSCLK=MCLK
wm8976_write_reg(0x4, 0x10);//16bit
wm8976_write_reg(0x2B,0x10);//BTL OUTPUT
wm8976_write_reg(0x9, 0x50);//Jack detect enable
wm8976_write_reg(0xD, 0x21);//Jack detect
wm8976_write_reg(0x7, 0x01);//Jack detect
}
static void init_s3c2410_iis_bus(void){
__raw_writel(0, iis_base + S3C2410_IISPSR);
__raw_writel(0, iis_base + S3C2410_IISCON);
__raw_writel(0, iis_base + S3C2410_IISMOD);
__raw_writel(0, iis_base + S3C2410_IISFCON);
clk_disable(iis_clock);
}
static void init_s3c2410_iis_bus_rx(void){
unsigned int iiscon, iismod, iisfcon;
char *dstr;
//Kill everything...
__raw_writel(0, iis_base + S3C2410_IISPSR);
__raw_writel(0, iis_base + S3C2410_IISCON);
__raw_writel(0, iis_base + S3C2410_IISMOD);
__raw_writel(0, iis_base + S3C2410_IISFCON);
clk_enable(iis_clock);
iiscon = iismod = iisfcon = 0;
//Setup basic stuff
iiscon |= S3C2410_IISCON_PSCEN; // Enable prescaler
iiscon |= S3C2410_IISCON_IISEN; // Enable interface
// iismod |= S3C2410_IISMOD_MASTER; // Set interface to Master Mode
iismod |= S3C2410_IISMOD_LR_LLOW; // Low for left channel
iismod |= S3C2410_IISMOD_MSB; // IIS format
iismod |= S3C2410_IISMOD_16BIT; // Serial data bit/channel is 16 bit
iismod |= S3C2410_IISMOD_384FS; // Master clock freq = 384 fs
iismod |= S3C2410_IISMOD_32FS; // 32 fs
iisfcon |= S3C2410_IISFCON_RXDMA; //Set RX FIFO acces mode to DMA
iisfcon |= S3C2410_IISFCON_TXDMA; //Set RX FIFO acces mode to DMA
iiscon |= S3C2410_IISCON_RXDMAEN; //Enable RX DMA service request
iiscon |= S3C2410_IISCON_TXIDLE; //Set TX channel idle
iismod |= S3C2410_IISMOD_RXMODE; //Set RX Mode
iisfcon |= S3C2410_IISFCON_RXENABLE; //Enable RX Fifo
dstr="RX";
//setup the prescaler
audio_set_dsp_speed(audio_rate);
//iiscon has to be set last - it enables the interface
__raw_writel(iismod, iis_base + S3C2410_IISMOD);
__raw_writel(iisfcon, iis_base + S3C2410_IISFCON);
__raw_writel(iiscon, iis_base + S3C2410_IISCON);
}
static void init_s3c2410_iis_bus_tx(void)
{
unsigned int iiscon, iismod, iisfcon;
char *dstr;
//Kill everything...
__raw_writel(0, iis_base + S3C2410_IISPSR);
__raw_writel(0, iis_base + S3C2410_IISCON);
__raw_writel(0, iis_base + S3C2410_IISMOD);
__raw_writel(0, iis_base + S3C2410_IISFCON);
clk_enable(iis_clock);
iiscon = iismod = iisfcon = 0;
//Setup basic stuff
iiscon |= S3C2410_IISCON_PSCEN; // Enable prescaler
iiscon |= S3C2410_IISCON_IISEN; // Enable interface
// iismod |= S3C2410_IISMOD_MASTER; // Set interface to Master Mode
iismod |= S3C2410_IISMOD_LR_LLOW; // Low for left channel
iismod |= S3C2410_IISMOD_MSB; // MSB format
iismod |= S3C2410_IISMOD_16BIT; // Serial data bit/channel is 16 bit
iismod |= S3C2410_IISMOD_384FS; // Master clock freq = 384 fs
iismod |= S3C2410_IISMOD_32FS; // 32 fs
iisfcon|= S3C2410_IISFCON_RXDMA; //Set RX FIFO acces mode to DMA
iisfcon|= S3C2410_IISFCON_TXDMA; //Set TX FIFO acces mode to DMA
iiscon |= S3C2410_IISCON_TXDMAEN; //Enable TX DMA service request
iiscon |= S3C2410_IISCON_RXIDLE; //Set RX channel idle
iismod |= S3C2410_IISMOD_TXMODE; //Set TX Mode
iisfcon|= S3C2410_IISFCON_TXENABLE; //Enable TX Fifo
dstr="TX";
//setup the prescaler
audio_set_dsp_speed(audio_rate);
//iiscon has to be set last - it enables the interface
__raw_writel(iismod, iis_base + S3C2410_IISMOD);
__raw_writel(iisfcon, iis_base + S3C2410_IISFCON);
__raw_writel(iiscon, iis_base + S3C2410_IISCON);
}
static int __init audio_init_dma(audio_stream_t * s, char *desc)
{
int ret ;
enum s3c2410_dmasrc source;
int hwcfg;
unsigned long devaddr;
dmach_t channel;
int dcon;
unsigned int flags = 0;
if(s->dma_ch == DMACH_I2S_OUT){
channel = DMACH_I2S_OUT;
source = S3C2410_DMASRC_MEM;
hwcfg = BUF_ON_APB;
devaddr = 0x55000010;
dcon = S3C2410_DCON_HANDSHAKE|S3C2410_DCON_SYNC_PCLK|S3C2410_DCON_INTREQ|S3C2410_DCON_TSZUNIT|S3C2410_DCON_SSERVE|S3C2410_DCON_CH2_I2SSDO|S3C2410_DCON_HWTRIG; // VAL: 0xa0800000;
flags = S3C2410_DMAF_AUTOSTART;
ret = s3c2410_dma_request(s->dma_ch, &s3c2410iis_dma_out, NULL);
s3c2410_dma_devconfig(channel, source, hwcfg, devaddr);
s3c2410_dma_config(channel, 2, dcon);
s3c2410_dma_set_buffdone_fn(channel, audio_dmaout_done_callback);
s3c2410_dma_setflags(channel, flags);
s->dma_ok = 1;
return ret;
}
else if(s->dma_ch == DMACH_I2S_IN){
channel = DMACH_I2S_IN;
source = S3C2410_DMASRC_HW;
hwcfg = BUF_ON_APB;
devaddr = 0x55000010;
dcon = S3C2410_DCON_HANDSHAKE|S3C2410_DCON_SYNC_PCLK|S3C2410_DCON_INTREQ|S3C2410_DCON_TSZUNIT|S3C2410_DCON_SSERVE|S3C2410_DCON_CH1_I2SSDI|S3C2410_DCON_HWTRIG; // VAL: 0xa2800000;
flags = S3C2410_DMAF_AUTOSTART;
ret = s3c2410_dma_request(s->dma_ch, &s3c2410iis_dma_in, NULL);
s3c2410_dma_devconfig(channel, source, hwcfg, devaddr);
s3c2410_dma_config(channel, 2, dcon);
s3c2410_dma_set_buffdone_fn(channel, audio_dmain_done_callback);
s3c2410_dma_setflags(channel, flags);
s->dma_ok =1;
return ret ;
}
else
return 1;
}
static int audio_clear_dma(audio_stream_t * s, struct s3c2410_dma_client *client)
{
s3c2410_dma_set_buffdone_fn(s->dma_ch, NULL);
s3c2410_dma_free(s->dma_ch, client);
return 0;
}
static int s3c2410iis_probe(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct resource *res;
unsigned long flags;
printk ("s3c2410iis_probe...\n");
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
printk(KERN_INFO PFX "failed to get memory region resouce\n");
return -ENOENT;
}
iis_base = (void *)S3C24XX_VA_IIS ;
if (iis_base == 0) {
printk(KERN_INFO PFX "failed to ioremap() region\n");
return -EINVAL;
}
iis_clock = clk_get(dev, "iis");
if (iis_clock == NULL) {
printk(KERN_INFO PFX "failed to find clock source\n");
return -ENOENT;
}
clk_enable(iis_clock);
local_irq_save(flags);
/* GPB 4: L3CLOCK, OUTPUT */
s3c2410_gpio_cfgpin(S3C2410_GPB4, S3C2410_GPB4_OUTP);
s3c2410_gpio_pullup(S3C2410_GPB4,1);
/* GPB 3: L3DATA, OUTPUT */
s3c2410_gpio_cfgpin(S3C2410_GPB3,S3C2410_GPB3_OUTP);
/* GPB 2: L3MODE, OUTPUT */
s3c2410_gpio_cfgpin(S3C2410_GPB2,S3C2410_GPB2_OUTP);
s3c2410_gpio_pullup(S3C2410_GPB2,1);
/* GPE 3: I2SSDI */
s3c2410_gpio_cfgpin(S3C2410_GPE3,S3C2410_GPE3_I2SSDI);
s3c2410_gpio_pullup(S3C2410_GPE3,0);
/* GPE 0: I2SLRCK */
s3c2410_gpio_cfgpin(S3C2410_GPE0,S3C2410_GPE0_I2SLRCK);
s3c2410_gpio_pullup(S3C2410_GPE0,0);
/* GPE 1: I2SSCLK */
s3c2410_gpio_cfgpin(S3C2410_GPE1,S3C2410_GPE1_I2SSCLK);
s3c2410_gpio_pullup(S3C2410_GPE1,0);
/* GPE 2: CDCLK */
s3c2410_gpio_cfgpin(S3C2410_GPE2,S3C2410_GPE2_CDCLK);
s3c2410_gpio_pullup(S3C2410_GPE2,0);
/* GPE 4: I2SSDO */
s3c2410_gpio_cfgpin(S3C2410_GPE4,S3C2410_GPE4_I2SSDO);
s3c2410_gpio_pullup(S3C2410_GPE4,0);
local_irq_restore(flags);
init_s3c2410_iis_bus();
//init_uda1341();
init_wm8976();
output_stream.dma_ch = DMACH_I2S_OUT;
if (audio_init_dma(&output_stream, "UDA1341 out")) {
audio_clear_dma(&output_stream,&s3c2410iis_dma_out);
printk( KERN_WARNING AUDIO_NAME_VERBOSE
": unable to get DMA channels\n" );
return -EBUSY;
}
input_stream.dma_ch = DMACH_I2S_IN;
if (audio_init_dma(&input_stream, "UDA1341 in")) {
audio_clear_dma(&input_stream,&s3c2410iis_dma_in);
printk( KERN_WARNING AUDIO_NAME_VERBOSE
": unable to get DMA channels\n" );
return -EBUSY;
}
audio_dev_dsp = register_sound_dsp(&smdk2410_audio_fops, -1);
audio_dev_mixer = register_sound_mixer(&smdk2410_mixer_fops, -1);
printk(AUDIO_NAME_VERBOSE " initialized\n");
return 0;
}
static int s3c2410iis_remove(struct device *dev) {
unregister_sound_dsp(audio_dev_dsp);
unregister_sound_mixer(audio_dev_mixer);
audio_clear_dma(&output_stream,&s3c2410iis_dma_out);
audio_clear_dma(&input_stream,&s3c2410iis_dma_in); /* input */
printk(AUDIO_NAME_VERBOSE " unloaded\n");
return 0;
}
extern struct bus_type platform_bus_type;
static struct device_driver s3c2410iis_driver = {
.name = "s3c2410-iis",
.bus = &platform_bus_type,
.probe = s3c2410iis_probe,
.remove = s3c2410iis_remove,
};
static int __init s3c2410_uda1341_init(void) {
memzero(&input_stream, sizeof(audio_stream_t));
memzero(&output_stream, sizeof(audio_stream_t));
return driver_register(&s3c2410iis_driver);
}
static void __exit s3c2410_uda1341_exit(void) {
driver_unregister(&s3c2410iis_driver);
}
module_init(s3c2410_uda1341_init);
module_exit(s3c2410_uda1341_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("superlp");
MODULE_DESCRIPTION("S3C2410 uda1341 sound driver");
7、应用程序
/*
* mp3播放器控制程序
* 功能:
k1:播放、暂停
k2:停止播放
k3:上一首
k4:下一首
* 附加:歌曲自动循环播放
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/*共享内存申请标记*/
#define PERM S_IRUSR|S_IWUSR
/*双向循环列表:存放歌曲名*/
struct song
{
char songname[20];
struct song *prev;
struct song *next;
};
/*孙子进程id号*/
pid_t gradchild;
/*子进程id号*/
pid_t pid;
/*共享内存描述标记*/
int shmid;
char *p_addr;
/*播放标记*/
int first_key=1;
int play_flag=0;
/*************************************************
Function name: play
Parameter : struct song *
Description : 播放函数
Return : void
Argument : void
Autor & date : ada 09,12,07
**************************************************/
void play(struct song *currentsong)
{
pid_t fd;
char *c_addr;
char *p;
int len;
char my_song[30]="/mp3/song/";
while(currentsong)
{
/*创建子进程,即孙子进程*/
fd = fork();
if(fd == -1)
{
perror("fork");
exit(1);
}
else if(fd == 0)
{
/*把歌曲名加上根路径*/
strcat(my_song,currentsong->songname);
p = my_song;
len = strlen(p);
/*去掉文件名最后的'\n'*/
my_song[len-1]='\0';
printf("THIS SONG IS %s\n",my_song);
execl("/mp3/madplay","madplay",my_song,NULL);
printf("\n\n\n");
}
else
{
/*内存映射*/
c_addr = shmat(shmid,0,0);
/*把孙子进程的id和当前播放歌曲的节点指针传入共享内存*/
memcpy(c_addr,&fd,sizeof(pid_t));
memcpy(c_addr + sizeof(pid_t)+1,¤tsong,4);
/*使用wait阻塞孙子进程,直到孙子进程播放完才能被唤醒;
当被唤醒时,表示播放MP3期间没有按键按下,则继续顺序播放下一首MP3*/
if(fd == wait(NULL))
{
currentsong = currentsong->next;
printf("THE NEXT SONG IS %s\n",currentsong->songname);
}
}
}
}
/*************************************************
Function name: creat_song_list
Parameter : void
Description : 创建歌曲名的双向循环链表
Return : struct song *
Argument : void
Autor & date : ada 09.12.07
**************************************************/
struct song *creat_song_list(void)
{
FILE *fd;
size_t size;
size_t len;
char *line = NULL;
struct song *head;
struct song *p1;
struct song *p2;
system("ls /mp3/song >song_list");
fd = fopen("song_list","r");
p1 = (struct song *)malloc(sizeof(struct song));
printf("==================================song list=====================================\n");
system("ls /mp3/song");
printf("\n");
printf("================================================================================\n");
size = getline(&line,&len,fd);
strncpy(p1->songname,line,strlen(line));
head = p1;
while((size = getline(&line,&len,fd)) != -1)
{
p2 = p1;
p1 = (struct song *)malloc(sizeof(struct song));
strncpy(p1->songname,line,strlen(line));
p2->next = p1;
p1->prev = p2;
}
p1->next = head;
head->prev = p1;
p1 = NULL;
p2 = NULL;
system("rm -rf song_list");
return head;
}
/*************************************************
Function name: startplay
Parameter : pid_t *,struct song *
Description : 开始播放函数
Return : void
Argument : void
Autor & date : ada 09.12.07
**************************************************/
void startplay(pid_t *childpid,struct song *my_song)
{
pid_t pid;
int ret;
/*创建子进程*/
pid = fork();
if(pid > 0)
{
*childpid = pid;
play_flag = 1;
sleep(1);
/*把孙子进程的pid传给父进程*/
memcpy(&gradchild,p_addr,sizeof(pid_t));
}
else if(0 == pid)
{
/*子进程播放MP3函数*/
play(my_song);
}
}
/*************************************************
Function name: my_pause
Parameter : pid_t
Description : 暂停函数
Return : void
Argument : void
Autor & date : ada 09,12,07
**************************************************/
void my_pause(pid_t pid)
{
printf("=======================PAUSE!PRESS K1 TO CONTINUE===================\n");
kill(pid,SIGSTOP); //对孙子进程发送SKGSTOP信号
play_flag = 0;
}
/*************************************************
Function name: my_pause
Parameter : pid_t
Description : 停止播放函数
Return : void
Argument : void
Autor & date : ada 09,12,07
**************************************************/
void my_stop(pid_t g_pid)
{
printf("=======================STOP!PRESS K1 TO START PLAY===================\n");
kill(g_pid,SIGKILL); //对孙子进程发送SKGKILL信号
kill(pid,SIGKILL); //对子进程发送SKGKILL信号
first_key=1;
}
/*************************************************
Function name: conti_play
Parameter : pid_t
Description : 继续函数
Return : void
Argument : void
Autor & date : ada 09,12,07
**************************************************/
void conti_play(pid_t pid)
{
printf("===============================CONTINUE=============================\n");
kill(pid,SIGCONT); //对孙子进程发送SIGCONT信号
play_flag=1;
}
/*************************************************
Function name: next
Parameter : pid_t
Description : 下一首函数
Return : void
Argument : void
Autor & date : ada 09.12.07
**************************************************/
void next(pid_t next_pid)
{
struct song *nextsong;
printf("===============================NEXT MP3=============================\n");
/*从共享内存获得孙子进程播放歌曲的节点指针*/
memcpy(&nextsong,p_addr + sizeof(pid_t)+1,4);
/*指向下首歌曲的节点*/
nextsong = nextsong->next;
/*杀死当前歌曲播放的子进程,孙子进程*/
kill(pid,SIGKILL);
kill(next_pid,SIGKILL);
wait(NULL);
startplay(&pid,nextsong);
}
/*************************************************
Function name: prev
Parameter : pid_t
Description : 上一首函数
Return : void
Argument : void
Autor & date : yuanhui 09.12.08
**************************************************/
void prev(pid_t prev_pid)
{
struct song *prevsong;
/*从共享内存获得孙子进程播放歌曲的节点指针*/
printf("===============================PRIOR MP3=============================\n");
memcpy(&prevsong,p_addr + sizeof(pid_t)+1,4);
/*指向上首歌曲的节点*/
prevsong = prevsong->prev;
/*杀死当前歌曲播放的子进程,孙子进程*/
kill(pid,SIGKILL);
kill(prev_pid,SIGKILL);
wait(NULL);
startplay(&pid,prevsong);
}
/*************************************************
Function name: main
Parameter : void
Description : 主函数
Return : int
Argument : void
Autor & date : ada 09.12.07
**************************************************/
int main(void)
{
int buttons_fd;
int key_value;
struct song *head;
/*打开设备文件*/
buttons_fd = open("/dev/buttons", 0);
if (buttons_fd < 0) {
perror("open device buttons");
exit(1);
}
/*创建播放列表*/
head = creat_song_list();
printf("===================================OPTION=======================================\n\n\n\n");
printf(" K1:START/PAUSE K2:STOP K3:NEXT K4:PRIOR\n\n\n\n");
printf("================================================================================\n");
/*共享内存:用于存放子进程ID,播放列表位置*/
if((shmid = shmget(IPC_PRIVATE,5,PERM))== -1)
exit(1);
p_addr = shmat(shmid,0,0);
memset(p_addr,'\0',1024);
while(1)
{
fd_set rds;
int ret;
FD_ZERO(&rds);
FD_SET(buttons_fd, &rds);
/*监听获取键值*/
ret = select(buttons_fd + 1, &rds, NULL, NULL, NULL);
if (ret < 0)
{
perror("select");
exit(1);
}
if (ret == 0)
printf("Timeout.\n");
else if (FD_ISSET(buttons_fd, &rds))
{
int ret = read(buttons_fd, &key_value, 4);
if (ret != 4)
{
if (errno != EAGAIN)
perror("read buttons\n");
continue;
}
else
{
//printf("buttons_value: %d\n", key_value+1);
/*首次播放,必须是按键1*/
if(first_key){
switch(key_value)
{
case 0:
startplay(&pid,head);
first_key=0;
break;
case 1:
case 2:
case 3:
printf("=======================PRESS K1 TO START PLAY===================\n");
break;
default:
printf("=======================PRESS K1 TO START PLAY===================\n");
printf(" *********1\n");
break;
} //end switch
}//end if(first_key)
/*若不是首次播放,则根据不同键值处理*/
else if(!first_key){
switch(key_value)
{
case 0:
printf(" *********2\n");
printf("play_flag:%d\n",play_flag);
if(play_flag)
my_pause(gradchild);
else
conti_play(gradchild);
break;
case 1:
printf(" *********3\n");
my_stop(gradchild);
break;
case 2:
printf(" *********3\n");
next(gradchild);
break;
case 3:
printf(" *********4\n");
prev(gradchild);
break;
} //end switch
}//end if(!first_key)
}
}
}
close(buttons_fd);
return 0;
}
8、把WM8976编译进内核
1. 确定内核里已经配置了sound\soc\s3c24xx\s3c2410-uda1341.c
-> Device Drivers
-> Sound
-> Advanced Linux Sound Architecture // 兼容OSS
-> Advanced Linux Sound Architecture
-> System on Chip audio support
<*> I2S of the Samsung S3C24XX chips
2. 修改sound/soc/s3c24xx/Makefile
obj-y += s3c2410-uda1341.o
改为:
obj-y += s3c-wm8976.o
3. make uImage
使用新内核启动
9、安装madplay
使用madplay测试声卡:
1. 解压:
tar xzf libid3tag-0.15.1b.tar.gz // 库
tar xzf libmad-0.15.1b.tar.gz // 库
tar xzf madplay-0.15.2b.tar.gz // APP
2. 编译 libid3tag-0.15.1b
mkdir tmp
cd libid3tag-0.15.1b
./configure --host=arm-linux --prefix=/work/sanqi/ndk/tmp
make
make install
3. 编译 libmad-0.15.1b
cd libmad-0.15.1b
./configure --host=arm-linux --prefix=/work/sanqi/ndk/tmp
make
make install
4. 编译madplay
cd madplay-0.15.2b/
./configure --host=arm-linux --prefix=/work/sanqi/ndk/tmp LDFLAGS="-L/work/sanqi/ndk/tmp" CFLAGS="-I /work/sanqi/ndk/tmp/include"
make
make install
5. 把tmp/bin/* tmp/lib/*so* (要加上-d)复制到根文件系统:
6. 把mp3文件复制到根文件系统mp3文件夹的song目录下
10、开发板根目录
在开发板根目录新建一个mp3文件,在mp3文件中新建song,把要播放的歌曲都放入song中,在mp3文件中放入应用程序。
11、运行
./app_mp3