pandas dataframe 做机器学习训练数据=》直接使用iloc或者as_matrix即可

样本示意,为kdd99数据源:

0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.01,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,255,1.00,0.00,0.01,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,udp,domain_u,SF,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0.00,0.00,0.00,0.00,0.50,1.00,0.00,10,3,0.30,0.30,0.30,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,253,0.99,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,tcp,http,SF,223,185,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,4,0.00,0.00,0.00,0.00,1.00,0.00,0.00,71,255,1.00,0.00,0.01,0.01,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,tcp,http,SF,230,260,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,19,0.00,0.00,0.00,0.00,1.00,0.00,0.11,3,255,1.00,0.00,0.33,0.07,0.33,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.01,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,252,0.99,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
1,tcp,smtp,SF,3170,329,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0.00,0.00,0.00,0.00,1.00,0.00,1.00,54,39,0.72,0.11,0.02,0.00,0.02,0.00,0.09,0.13,normal.
0,tcp,http,SF,297,13787,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,177,255,1.00,0.00,0.01,0.01,0.00,0.00,0.00,0.00,normal. 
0,tcp,http,SF,291,3542,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,12,0.00,0.00,0.00,0.00,1.00,0.00,0.00,187,255,1.00,0.00,0.01,0.01,0.00,0.00,0.00,0.00,normal.
0,tcp,http,SF,295,753,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,21,22,0.00,0.00,0.00,0.00,1.00,0.00,0.09,196,255,1.00,0.00,0.01,0.01,0.00,0.00,0.00,0.00,normal. 
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.01,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,tcp,http,SF,268,9235,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,5,5,0.00,0.00,0.00,0.00,1.00,0.00,0.00,58,255,1.00,0.00,0.02,0.05,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,253,0.99,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,tcp,http,SF,223,185,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,http,SF,227,8841,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,13,13,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,http,SF,222,19564,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,22,23,0.00,0.00,0.00,0.00,1.00,0.00,0.09,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,ftp_data,SF,740,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,77,33,0.34,0.08,0.34,0.06,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,ftp_data,SF,35195,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,10,0.00,0.00,0.00,0.00,1.00,0.00,0.00,92,44,0.43,0.07,0.43,0.05,0.00,0.00,0.00,0.00,normal.
0,tcp,ftp_data,SF,8325,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0.00,0.00,0.00,0.00,1.00,0.00,0.00,103,54,0.49,0.06,0.49,0.04,0.00,0.00,0.00,0.00,normal.

代码:

# -*- coding:utf-8 -*-

import re
import matplotlib.pyplot as plt
import os
from sklearn.feature_extraction.text import CountVectorizer
from sklearn import preprocessing
from sklearn import cross_validation
import os
from sklearn.datasets import load_iris
from sklearn import tree
import pydotplus
from sklearn.preprocessing import LabelEncoder
import numpy as np
import pandas as pd
from sklearn_pandas import DataFrameMapper

def label(x):
    if x == "normal.":
        return 0
    else:
        return 1

if __name__ == '__main__':
    data = pd.read_csv('../data/kddcup99/corrected', sep=",", header=None)
    print data.columns
    print data.iloc[0,0], data.iloc[0,1]
    print len(data)
    col_cnt = len(data.columns)

    normal = data.loc[data.loc[:, col_cnt-1] == "normal.", :]
    print "normal len:", len(normal)
    guess = data.loc[data.loc[:, col_cnt-1] == "guess_passwd.", :]
    print "normal len:", len(guess)

    data = pd.concat([normal, guess])
    print len(data)

    le = preprocessing.LabelEncoder()
    for i in range(col_cnt-1): 
        if isinstance(data.iloc[0,i], str):
            print "tranform string column only:", i
            data.loc[:,i] = le.fit_transform(data.loc[:,i])
    data.loc[:,col_cnt-1] = data.loc[:,col_cnt-1].apply(label)
    print data.iloc[0,0], data.iloc[0,1]
    x = data.iloc[:, range(col_cnt-1)]
    #x = data.iloc[:, [0,4,5,6,7,8,22,23,24,25,26,27,28,29,30]]
    y = data.iloc[:, col_cnt-1]
  
''' also OK
    data = data.as_matrix()
    x = data[:, range(col_cnt-1)]
    y = data[:, col_cnt-1]
'''
print "x=>" print x.iloc[0:3, :] print "y=>" print y[-3:] #v=load_kdd99("../data/kddcup99/corrected") #x,y=get_guess_passwdandNormal(v) clf = tree.DecisionTreeClassifier() clf = clf.fit(x, y) print clf print cross_validation.cross_val_score(clf, x, y, n_jobs=-1, cv=10) clf = clf.fit(x, y) dot_data = tree.export_graphviz(clf, out_file=None) graph = pydotplus.graph_from_dot_data(dot_data) graph.write_pdf("../photo/6/iris-dt.pdf")

结果:

Int64Index([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
            17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
            34, 35, 36, 37, 38, 39, 40, 41],
           dtype='int64')
0 udp
311029
normal len: 60593
normal len: 4367
64960
tranform string column only: 1
tranform string column only: 2
tranform string column only: 3
0 2
x=>
   0   1   2   3    4    5   6   7   8   9  ...    31   32   33    34   35  \
0   0   2  15   7  105  146   0   0   0   0 ...   255  254  1.0  0.01  0.0   
1   0   2  15   7  105  146   0   0   0   0 ...   255  254  1.0  0.01  0.0   
2   0   2  15   7  105  146   0   0   0   0 ...   255  254  1.0  0.01  0.0   

    36   37   38   39   40  
0  0.0  0.0  0.0  0.0  0.0  
1  0.0  0.0  0.0  0.0  0.0  
2  0.0  0.0  0.0  0.0  0.0  

[3 rows x 41 columns]
y=>
142098    1
142099    1
142101    1
Name: 41, dtype: int64
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
fg[ 0.9561336   0.99892258  0.99938433  0.99984606  0.99984606  0.99969212
  1.          0.99984604  0.99969207  1.        ]

 

转载于:https://www.cnblogs.com/bonelee/p/7808478.html

你可能感兴趣的:(pandas dataframe 做机器学习训练数据=》直接使用iloc或者as_matrix即可)