导读:关于知识图谱构建的过程,《详解自下而上构建知识图谱全过程》基本都覆盖到了,安利一下,作为入门读物是极好的,本篇并非原创,内容基本来自于此(原作者如果疑问,请联系删除)。当然知识图谱的概念定义,现在个人感觉并没有完全统一的标准,文中有些分类和观点我也不是完全认同,后续会有博客系统阐述我对于知识图谱相关概念理解和定义
“The world is not made of strings , but is made of things.”——辛格博士,from Google.
知识图谱的构建技术主要有自顶向下和自底向上两种。其中自顶向下构建是指借助百科类网站等结构化数据源,从高质量数据中提取本体和模式信息,加入到知识库里。而自底向上构建,则是借助一定的技术手段,从公开采集的数据中提取出资源模式,选择其中置信度较高的信息,加入到知识库中。
知识图谱,是结构化的语义知识库,用于迅速描述物理世界中的概念及其相互关系,通过将数据粒度从document级别降到data级别,聚合大量知识,从而实现知识的快速响应和推理。
当下知识图谱已在工业领域得到了广泛应用,如搜索领域的Google搜索、百度搜索,社交领域的领英经济图谱,企业信息领域的天眼查企业图谱等。
在知识图谱技术发展初期,多数参与企业和科研机构主要采用自顶向下的方式构建基础知识库,如Freebase。随着自动知识抽取与加工技术的不断成熟,当前的知识图谱大多采用自底向上的方式构建,如Google的Knowledge Vault和微软的Satori知识库。
俗话说:“看人先看脸。”在我们深入了解知识图谱之前,让我们先来看一下它长什么样子!
如图所示,你可以看到,如果两个节点之间存在关系,他们就会被一条无向边连接在一起,那么这个节点,我们就称为实体(Entity),它们之间的这条边,我们就称为关系(Relationship)。
知识图谱的基本单位,便是“实体(Entity)-关系(Relationship)-实体(Entity)”构成的三元组,这也是知识图谱的核心。
知识图谱的原始数据类型一般来说有三类(也是互联网上的三类原始数据):
知识图谱的架构主要可以被分为:
在逻辑上,我们通常将知识图谱划分为两个层次:数据层和模式层。
知识图谱的整体架构如图所示,其中虚线框内的部分为知识图谱的构建过程,同时也是知识图谱更新的过程。
别紧张,让我们顺着这张图来理一下思路。首先我们有一大堆的数据,这些数据可能是结构化的、非结构化的以及半结构化的,然后我们基于这些数据来构建知识图谱,这一步主要是通过一系列自动化或半自动化的技术手段,来从原始数据中提取出知识要素,即一堆实体关系,并将其存入我们的知识库的模式层和数据层。
构建知识图谱是一个迭代更新的过程,根据知识获取的逻辑,每一轮迭代包含三个阶段:
前面我们已经说过了,知识图谱有自顶向下和自底向上两种构建方式,这里提到的构建技术主要是自底向上的构建技术。
如前所述,构建知识图谱是一个迭代更新的过程,根据知识获取的逻辑,每一轮迭代包含三个阶段:
信息抽取(infromation extraction)是知识图谱构建的第1步,其中的关键问题是:如何从异构数据源中自动抽取信息得到候选指示单元?
信息抽取是一种自动化地从半结构化和无结构数据中抽取实体、关系以及实体属性等结构化信息的技术。涉及的关键技术包括:实体抽取、关系抽取和属性抽取。
实体抽取,也称为命名实体识别(named entity recognition,NER),是指从文本数据集中自动识别出命名实体。
比如在下图中,通过实体抽取我们可以从其中抽取出三个实体——“Steve Balmer”, “Bill Gates”,和”Microsoft”。
实体抽取的研究历史主要是从面向单一领域进行实体抽取,逐步跨步到面向开放域(open domain)的实体抽取。
文本语料经过实体抽取之后,得到的是一系列离散的命名实体,为了得到语义信息,还需要从相关语料中提取出实体之间的关联关系,通过关系将实体联系起来,才能够形成网状的知识结构。这就是关系抽取需要做的事,如下图所示。
研究历史:
属性抽取的目标是从不同信息源中采集特定实体的属性信息,如针对某个公众人物,可以从网络公开信息中得到其昵称、生日、国籍、教育背景等信息。
研究历史:
通过信息抽取,我们就从原始的非结构化和半结构化数据中获取到了实体、关系以及实体的属性信息。
如果我们将接下来的过程比喻成拼图的话,那么这些信息就是拼图碎片,散乱无章,甚至还有从其他拼图里跑来的碎片、本身就是用来干扰我们拼图的错误碎片。
也就是说:
那么如何解决这一问题,就是在知识融合这一步里我们需要做的了。知识融合包括2部分内容:
实体链接(entity linking)是指对于从文本中抽取得到的实体对象,将其链接到知识库中对应的正确实体对象的操作。
其基本思想是首先根据给定的实体指称项,从知识库中选出一组候选实体对象,然后通过相似度计算将指称项链接到正确的实体对象。
研究历史:
实体链接的流程:
实体消歧是专门用于解决同名实体产生歧义问题的技术,通过实体消歧,就可以根据当前的语境,准确建立实体链接,实体消歧主要采用聚类法。其实也可以看做基于上下文的分类问题,类似于词性消歧和词义消歧。
共指消解技术主要用于解决多个指称对应同一实体对象的问题。在一次会话中,多个指称可能指向的是同一实体对象。利用共指消解技术,可以将这些指称项关联(合并)到正确的实体对象,由于该问题在信息检索和自然语言处理等领域具有特殊的重要性,吸引了大量的研究努力。共指消解还有一些其他的名字,比如对象对齐、实体匹配和实体同义。
在前面的实体链接中,我们已经将实体链接到知识库中对应的正确实体对象那里去了,但需要注意的是,实体链接链接的是我们从半结构化数据和非结构化数据那里通过信息抽取提取出来的数据。
那么除了半结构化数据和非结构化数据以外,我们还有个更方便的数据来源——结构化数据,如外部知识库和关系数据库。
对于这部分结构化数据的处理,就是我们知识合并的内容啦。一般来说知识合并主要分为两种:
经过刚才那一系列步骤,我们终于走到了知识加工这一步了!
感觉大家可能已经有点晕眩,那么让我们再来看一下知识图谱的这张架构图。
在前面,我们已经通过信息抽取,从原始语料中提取出了实体、关系与属性等知识要素,并且经过知识融合,消除实体指称项与实体对象之间的歧义,得到一系列基本的事实表达。
然而事实本身并不等于知识。要想最终获得结构化,网络化的知识体系,还需要经历知识加工的过程。知识加工主要包括3方面内容:本体构建、知识推理和质量评估。
本体(ontology)是指公认的概念集合、概念框架,如“人”、“事”、“物”等。
本体可以采用人工编辑的方式手动构建(借助本体编辑软件),也可以以数据驱动的自动化方式构建本体。因为人工方式工作量巨大,且很难找到符合要求的专家,因此当前主流的全局本体库产品,都是从一些面向特定领域的现有本体库出发,采用自动构建技术逐步扩展得到的。
自动化本体构建过程包含三个阶段:
比如对下面这个例子,当知识图谱刚得到“阿里巴巴”、“腾讯”、“手机”这三个实体的时候,可能会认为它们三个之间并没有什么差别,但当它去计算三个实体之间的相似度后,就会发现,阿里巴巴和腾讯之间可能更相似,和手机差别更大一些。
这就是第一步的作用,但这样下来,知识图谱实际上还是没有一个上下层的概念,它还是不知道,阿里巴巴和手机,根本就不隶属于一个类型,无法比较。因此我们在实体上下位关系抽取这一步,就需要去完成这样的工作,从而生成第三步的本体。
当三步结束后,这个知识图谱可能就会明白,“阿里巴巴和腾讯,其实都是公司这样一个实体下的细分实体。它们和手机并不是一类。”
在我们完成了本体构建这一步之后,一个知识图谱的雏形便已经搭建好了。但可能在这个时候,知识图谱之间大多数关系都是残缺的,缺失值非常严重,那么这个时候,我们就可以使用知识推理技术,去完成进一步的知识发现。比如在下面这个例子里:
我们可以发现:如果A是B的配偶,B是C的主席,C坐落于D,那么我们就可以认为,A生活在D这个城市。
根据这一条规则,我们可以去挖掘一下在图里,是不是还有其他的path满足这个条件,那么我们就可以将AD两个关联起来。除此之外,我们还可以去思考,串联里有一环是B是C的主席,那么B是C的CEO、B是C的COO,是不是也可以作为这个推理策略的一环呢?
当然知识推理的对象也并不局限于实体间的关系,也可以是实体的属性值,本体的概念层次关系等。比如:
这一块的算法主要可以分为3大类,基于逻辑的推理、基于图的推理和基于深度学习的推理。
质量评估也是知识库构建技术的重要组成部分,这一部分存在的意义在于:可以对知识的可信度进行量化,通过舍弃置信度较低的知识来保障知识库的质量。
好啦,在质量评估之后,你是不是想说,妈耶知识图谱终于构建完毕了。终于可以松一口气了。
好吧,实不相瞒,知识图谱这个宝宝目前虽然我们构建成功了。
但是!你家宝宝不吃饭的啊!你家宝宝不学习的啊!
所以,让我们冷静一下,乖乖进入知识更新这一步……
从逻辑上看,知识库的更新包括概念层的更新和数据层的更新。
概念层的更新是指新增数据后获得了新的概念,需要自动将新的概念添加到知识库的概念层中。
数据层的更新主要是新增或更新实体、关系、属性值,对数据层进行更新需要考虑数据源的可靠性、数据的一致性(是否存在矛盾或冗杂等问题)等可靠数据源,并选择在各数据源中出现频率高的事实和属性加入知识库。
知识图谱的内容更新有两种方式:
好了!终于终于!知识图谱的构建方式我们就此结束了!
为了让大家不立刻弃疗,让我们来看看知识图谱能做到什么,以及目前已经做到了什么~
事实上,知识图谱的应用远不止于此。在我看来,这个世界就是一张巨大的知识图谱,是无数个实体关系对,这两年工业界对图数据库、知识图谱的巨大需求也同样反映出了这一点。
[1] 自下而上构建知识图谱全过程