图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一种非常常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定帮助。
1. 滤波分类
线性滤波: 对邻域中的像素的计算为线性运算时,如利用窗口函数进行平滑加权求和的运算,或者某种卷积运算,都可以称为线性滤波。常见的线性滤波有:均值滤波、高斯滤波、盒子滤波、拉普拉斯滤波等等,通常线性滤波器之间只是模版系数不同。
非线性滤波: 非线性滤波利用原始图像跟模版之间的一种逻辑关系得到结果,如最值滤波器,中值滤波器。比较常用的有中值滤波器和双边滤波器。
2. 方框(盒子)滤波
方框滤波是一种非常有用的线性滤波,也叫盒子滤波,均值滤波就是盒子滤波归一化的特殊情况。 应用:均值滤波、引导滤波、计算Haar特征等等。
优势: 快!它可以使复杂度为O(MN)的求和,求方差等运算降低到O(1)或近似于O(1)的复杂度,也就是说与邻域尺寸无关了,有点类似积分图吧,但是比积分图更快(与它的实现方式有关)。
可见,归一化了就是均值滤波;不归一化则可以计算每个像素邻域上的各种积分特性,方差、协方差,平方和等等。
3. 均值滤波
应用场合: 根据冈萨雷斯书中的描述,均值模糊可以模糊图像以便得到感兴趣物体的粗略描述,也就是说,去除图像中的不相关细节,其中“不相关”是指与滤波器模板尺寸相比较小的像素区域,从而对图像有一个整体的认知。即为了对感兴趣的物体得到一个大致的整体的描述而模糊一幅图像,忽略细节。
均值滤波的缺陷: 均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声。
均值滤波是上述方框滤波的特殊情况,均值滤波方法是:对待处理的当前像素,选择一个模板,该模板为其邻近的若干个像素组成,用模板的均值(方框滤波归一化)来替代原像素的值。公式表示为:
g(x,y)为该邻域的中心像素,n跟系数模版大小有关,一般3*3邻域的模板,n取为9,如:
这里模板是可变的,一般取奇数,如5 * 5 , 7 * 7等等。
注:在实际处理过程中可对图像边界进行扩充,扩充为0或扩充为邻近的像素值。
应用: 高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声,如传统车牌识别等。
高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小,更能够保持图像的整体细节。
其中不必纠结于系数,因为它只是一个常数!并不会影响互相之间的比例关系,并且最终都要进行归一化,所以在实际计算时我们是忽略它而只计算后半部分:
其中(x,y)为掩膜内任一点的坐标,(ux,uy)为掩膜内中心点的坐标,在图像处理中可认为是整数;σ是标准差。
例如:要产生一个3×3的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下)。
这样,将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。 对于窗口模板的大小为 (2k+1)×(2k+1),模板中各个元素值的计算公式如下:
这样计算出来的模板有两种形式:小数和整数。
生成高斯掩膜(小数形式)
首先要确定生产掩模的尺寸wsize,然后设定高斯分布的标准差。生成的过程,先根据模板的大小,找到模板的中心位置center。 然后遍历,根据高斯分布的函数,计算模板中每个系数的值。
最后模板的每个系数要除以所有系数的和。这样就得到了小数形式的模板。
python 生成高斯模板
3×3,σ=0.8的小数型模板:
# 通过一维高斯核相乘生成二维高斯核
import cv2
import numpy as np
kx = cv2.getGaussianKernel(3,0.8)
ky = cv2.getGaussianKernel(3,0.8)
kernal = np.multiply(kx,np.transpose(ky))
print (kernal)
[[0.05711826 0.12475775 0.05711826]
[0.12475775 0.27249597 0.12475775]
[0.05711826 0.12475775 0.05711826]]
σ的意义及选取
高斯滤波器模板的生成最重要的参数就是高斯分布的标准差σ。标准差代表着数据的离散程度,如果σ较小,那么生成的模板的中心系数较大,而周围的系数较小,这样对图像的平滑效果就不是很明显;反之,σ较大,则生成的模板的各个系数相差就不是很大,比较类似均值模板,对图像的平滑效果比较明显。
结论:σ越小分布越瘦高,σ越大分布越矮胖。
1.方框(平均)滤波
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('./keji.jpg')
cv2.imshow("kejiorigin",img)
cv2.waitKey()
blur = cv2.blur(img,(5,5))
cv2.imshow("kejifilter",blur)
cv2.waitKey()
2.高斯滤波
blur = cv2.GaussianBlur(img,(5,5),0)
cv2.imshow("kejigaussfilter",blur)
cv2.waitKey()
3.中位模糊
median = cv2.medianBlur(img,5)
cv2.imshow("kejimediumfilter",median)
cv2.waitKey()
相关文档
opencv 中文文档