贝叶斯定理及典型应用

 

贝叶斯定理Bayes' theorem 它是概率论中的一个结果,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。

通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。

作为一个规范的原理,贝叶斯定理对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中,概率如何被赋值,有着不同的看法: 频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯定理。


贝叶斯定理的陈述

贝叶斯定理是关于随机事件A和B的条件概率和边缘概率的一则定理。

P(A|B) = /frac{P(B | A)/, P(A)}{P(B)}

其中P(A|B)是在B发生的情况下A发生的可能性。

在贝叶斯定理中,每个名词都有约定俗成的名称:

  • P(A)是A先验概率边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。
  • P(A|B)是已知B发生后A条件概率,也由于得自B的取值而被称作A的后验概率。
  • P(B|A)是已知A发生后B条件概率,也由于得自A的取值而被称作B的后验概率。
  • P(B)是B先验概率边缘概率,也作标准化常量(normalized constant).

按这些术语,Bayes定理可表述为:

后验概率 = (相似度*先验概率)/标准化常量

也就是说,后验概率与先验概率和相似度的乘积成正比。

另外,比例P(B|A)/P(B)也有时被称作标准相似度(standardised likelihood),Bayes定理可表述为:

后验概率 = 标准相似度*先验概率

 

贝叶斯定理的推广

 

P(A|B,C) = /frac{P(A,B,C)}{P(B,C)} = /frac{P(A,B,C)}{P(B) /, P(C|B)} = = /frac{P(C|A,B) /, P(A,B)}{P(B) /, P(C|B)} = /frac{P(A) /, P(B|A) /, P(C|A,B)}{P(B) /, P(C|B)}

 



 

贝叶斯定理的典型应用

 

吸毒者检测

贝叶斯定理在检测吸毒者时很有用。假设一个常规的检测结果的敏感度与可靠度均为99%,也就是说,当被检者吸毒时,每次检测呈阳性(+)的概率为99%。而被检者不吸毒时,每次检测呈阴性(-)的概率为99%。从检测结果的概率来看,检测结果是比较准确的,但是贝叶斯定理确可以揭示一个潜在的问题。假设某公司将对其全体雇员进行一次鸦片吸食情况的检测,已知0.5%的雇员吸毒。我们想知道,每位医学检测呈阳性的雇员吸毒的概率有多高?令“D”为雇员吸毒事件,“N”为雇员不吸毒事件,“+”为检测呈阳性事件。可得

  • P(D)代表雇员吸毒的概率,不考虑其他情况,该值为0.005。因为公司的预先统计表明该公司的雇员中有0.5%的人吸食毒品,所以这个值就是D的先验概率。
  • P(N)代表雇员不吸毒的概率,显然,该值为0.995,也就是1-P(D)。
  • P(+|D)代表吸毒者阳性检出率,这是一个条件概率,由于阳性检测准确性是99%,因此该值为0.99。
  • P(+|N)代表不吸毒者阳性检出率,也就是出错检测的概率,该值为0.01,因为对于不吸毒者,其检测为阴性的概率为99%,因此,其被误检测成阳性的概率为1-99%。
  • P(+)代表不考虑其他因素的影响的阳性检出率。该值为0.0149或者1.49%。我们可以通过全概率公式计算得到:此概率 = 吸毒者阳性检出率(0.5% x 99% = 0.495%)+ 不吸毒者阳性检出率(99.5% x 1% = 0.995%)。P(+)=0.0149是检测呈阳性的先验概率。用数学公式描述为:
/begin{align}P(+)=P(+,D)+P(+,N)=P(+|D)P(D)+P(+|N)P(N)/end{align}

根据上述描述,我们可以计算某人检测呈阳性时确实吸毒的条件概率P(D|+):

贝叶斯定理及典型应用_第1张图片

尽管我们的检测结果可靠性很高,但是只能得出如下结论:如果某人检测呈阳性,那么此人是吸毒的概率只有大约33%,也就是说此人不吸毒的可能性比较大。我们测试的条件(本例中指D,雇员吸毒)越难发生,发生误判的可能性越大。

 


 

你可能感兴趣的:(贝叶斯定理及典型应用)