3GPP机密性和完整性算法规范128-EEA3和128-EIA3(二)----祖冲之算法的C语言实现

3GPP机密性和完整性算法规范128-EEA3和128-EIA3(一)----密钥生成原理

   3GPP机密性和完整性算法规范128-EEA3和128-EIA3(二)----祖冲之算法的C语言实现

   3GPP机密性和完整性算法规范128-EEA3和128-EIA3(三)----机密性算法(EEA3)和完整性算法(EIA3)

   3GPP机密性和完整性算法规范128-EEA3和128-EIA3(四)----测试用例

   3GPP机密性和完整性算法规范128-EEA3和128-EIA3(五)----文档代码资源

建议有需要的同学将代码和原理结合来看,测试代码用测试用例,如果有不清楚的地方可以下载相关代码和资源后本地查看

本代码只是密钥生成的代码,如果想看机密性和完整性具体封装和调用的代码,可以查看上面 文档三 和 代码资源

ZUC算法的C语言实现

/* ——————————————————————- */

typedef unsigned char u8;

typedef unsigned int u32;

/* ——————————————————————- */

/* the state registers of LFSR */

u32 LFSR_S0;

u32 LFSR_S1;

u32 LFSR_S2;

u32 LFSR_S3;

u32 LFSR_S4;

u32 LFSR_S5;

u32 LFSR_S6;

u32 LFSR_S7;

u32 LFSR_S8;

u32 LFSR_S9;

u32 LFSR_S10;

u32 LFSR_S11;

u32 LFSR_S12;

u32 LFSR_S13;

u32 LFSR_S14;

u32 LFSR_S15;

 

/* the registers of F */

u32 F_R1;

u32 F_R2;

 

/* the outputs of BitReorganization */

u32 BRC_X0;

u32 BRC_X1;

u32 BRC_X2;

u32 BRC_X3;

 

/* the s-boxes */

u8 S0[256] = {

0x3e,0x72,0x5b,0x47,0xca,0xe0,0x00,0x33,0x04,0xd1,0x54,0x98,0x09,0xb9,0x6d,0xcb,

0x7b,0x1b,0xf9,0x32,0xaf,0x9d,0x6a,0xa5,0xb8,0x2d,0xfc,0x1d,0x08,0x53,0x03,0x90,

0x4d,0x4e,0x84,0x99,0xe4,0xce,0xd9,0x91,0xdd,0xb6,0x85,0x48,0x8b,0x29,0x6e,0xac,

0xcd,0xc1,0xf8,0x1e,0x73,0x43,0x69,0xc6,0xb5,0xbd,0xfd,0x39,0x63,0x20,0xd4,0x38,

0x76,0x7d,0xb2,0xa7,0xcf,0xed,0x57,0xc5,0xf3,0x2c,0xbb,0x14,0x21,0x06,0x55,0x9b,

0xe3,0xef,0x5e,0x31,0x4f,0x7f,0x5a,0xa4,0x0d,0x82,0x51,0x49,0x5f,0xba,0x58,0x1c,

0x4a,0x16,0xd5,0x17,0xa8,0x92,0x24,0x1f,0x8c,0xff,0xd8,0xae,0x2e,0x01,0xd3,0xad,

0x3b,0x4b,0xda,0x46,0xeb,0xc9,0xde,0x9a,0x8f,0x87,0xd7,0x3a,0x80,0x6f,0x2f,0xc8,

0xb1,0xb4,0x37,0xf7,0x0a,0x22,0x13,0x28,0x7c,0xcc,0x3c,0x89,0xc7,0xc3,0x96,0x56,

0x07,0xbf,0x7e,0xf0,0x0b,0x2b,0x97,0x52,0x35,0x41,0x79,0x61,0xa6,0x4c,0x10,0xfe,

0xbc,0x26,0x95,0x88,0x8a,0xb0,0xa3,0xfb,0xc0,0x18,0x94,0xf2,0xe1,0xe5,0xe9,0x5d,

0xd0,0xdc,0x11,0x66,0x64,0x5c,0xec,0x59,0x42,0x75,0x12,0xf5,0x74,0x9c,0xaa,0x23,

0x0e,0x86,0xab,0xbe,0x2a,0x02,0xe7,0x67,0xe6,0x44,0xa2,0x6c,0xc2,0x93,0x9f,0xf1,

0xf6,0xfa,0x36,0xd2,0x50,0x68,0x9e,0x62,0x71,0x15,0x3d,0xd6,0x40,0xc4,0xe2,0x0f,

0x8e,0x83,0x77,0x6b,0x25,0x05,0x3f,0x0c,0x30,0xea,0x70,0xb7,0xa1,0xe8,0xa9,0x65,

0x8d,0x27,0x1a,0xdb,0x81,0xb3,0xa0,0xf4,0x45,0x7a,0x19,0xdf,0xee,0x78,0x34,0x60

};

 

u8 S1[256] =  {

0x55,0xc2,0x63,0x71,0x3b,0xc8,0x47,0x86,0x9f,0x3c,0xda,0x5b,0x29,0xaa,0xfd,0x77,

0x8c,0xc5,0x94,0x0c,0xa6,0x1a,0x13,0x00,0xe3,0xa8,0x16,0x72,0x40,0xf9,0xf8,0x42,

0x44,0x26,0x68,0x96,0x81,0xd9,0x45,0x3e,0x10,0x76,0xc6,0xa7,0x8b,0x39,0x43,0xe1,

0x3a,0xb5,0x56,0x2a,0xc0,0x6d,0xb3,0x05,0x22,0x66,0xbf,0xdc,0x0b,0xfa,0x62,0x48,

0xdd,0x20,0x11,0x06,0x36,0xc9,0xc1,0xcf,0xf6,0x27,0x52,0xbb,0x69,0xf5,0xd4,0x87,

0x7f,0x84,0x4c,0xd2,0x9c,0x57,0xa4,0xbc,0x4f,0x9a,0xdf,0xfe,0xd6,0x8d,0x7a,0xeb,

0x2b,0x53,0xd8,0x5c,0xa1,0x14,0x17,0xfb,0x23,0xd5,0x7d,0x30,0x67,0x73,0x08,0x09,

0xee,0xb7,0x70,0x3f,0x61,0xb2,0x19,0x8e,0x4e,0xe5,0x4b,0x93,0x8f,0x5d,0xdb,0xa9,

0xad,0xf1,0xae,0x2e,0xcb,0x0d,0xfc,0xf4,0x2d,0x46,0x6e,0x1d,0x97,0xe8,0xd1,0xe9,

0x4d,0x37,0xa5,0x75,0x5e,0x83,0x9e,0xab,0x82,0x9d,0xb9,0x1c,0xe0,0xcd,0x49,0x89,

0x01,0xb6,0xbd,0x58,0x24,0xa2,0x5f,0x38,0x78,0x99,0x15,0x90,0x50,0xb8,0x95,0xe4,

0xd0,0x91,0xc7,0xce,0xed,0x0f,0xb4,0x6f,0xa0,0xcc,0xf0,0x02,0x4a,0x79,0xc3,0xde,

0xa3,0xef,0xea,0x51,0xe6,0x6b,0x18,0xec,0x1b,0x2c,0x80,0xf7,0x74,0xe7,0xff,0x21,

0x5a,0x6a,0x54,0x1e,0x41,0x31,0x92,0x35,0xc4,0x33,0x07,0x0a,0xba,0x7e,0x0e,0x34,

0x88,0xb1,0x98,0x7c,0xf3,0x3d,0x60,0x6c,0x7b,0xca,0xd3,0x1f,0x32,0x65,0x04,0x28,

0x64,0xbe,0x85,0x9b,0x2f,0x59,0x8a,0xd7,0xb0,0x25,0xac,0xaf,0x12,0x03,0xe2,0xf2

};

 

/* the constants D */

u32 EK_d[16] = {

0x44D7, 0x26BC, 0x626B, 0x135E, 0x5789, 0x35E2, 0x7135, 0x09AF,

0x4D78, 0x2F13, 0x6BC4, 0x1AF1, 0x5E26, 0x3C4D, 0x789A, 0x47AC

};

 

/* ——————————————————————- */

/* c = a + b mod (2^31 – 1) */

u32 AddM(u32 a, u32 b)

{

u32 c = a + b;

return (c & 0x7FFFFFFF) + (c >> 31);

}

 

/* LFSR with initialization mode */

#define MulByPow2(x, k) ((((x) << k) | ((x) >> (31 - k))) & 0x7FFFFFFF)

void LFSRWithInitialisationMode(u32 u)

{

u32 f, v;

 

f = LFSR_S0;

v = MulByPow2(LFSR_S0, 8);

f = AddM(f, v);

 

v = MulByPow2(LFSR_S4, 20);

f = AddM(f, v);

 

v = MulByPow2(LFSR_S10, 21);

f = AddM(f, v);

 

v = MulByPow2(LFSR_S13, 17);

f = AddM(f, v);

 

v = MulByPow2(LFSR_S15, 15);

f = AddM(f, v);

 

f = AddM(f, u);

 

/* update the state */

LFSR_S0 = LFSR_S1;

LFSR_S1 = LFSR_S2;

LFSR_S2 = LFSR_S3;

LFSR_S3 = LFSR_S4;

LFSR_S4 = LFSR_S5;

LFSR_S5 = LFSR_S6;

LFSR_S6 = LFSR_S7;

LFSR_S7 = LFSR_S8;

LFSR_S8 = LFSR_S9;

LFSR_S9 = LFSR_S10;

LFSR_S10 = LFSR_S11;

LFSR_S11 = LFSR_S12;

LFSR_S12 = LFSR_S13;

LFSR_S13 = LFSR_S14;

LFSR_S14 = LFSR_S15;

LFSR_S15 = f;

}

 

/* LFSR with work mode */

void LFSRWithWorkMode()

{

u32 f, v;

 

f = LFSR_S0;

v = MulByPow2(LFSR_S0, 8);

f = AddM(f, v);

 

v = MulByPow2(LFSR_S4, 20);

f = AddM(f, v);

 

v = MulByPow2(LFSR_S10, 21);

f = AddM(f, v);

 

v = MulByPow2(LFSR_S13, 17);

f = AddM(f, v);

 

v = MulByPow2(LFSR_S15, 15);

f = AddM(f, v);

 

/* update the state */

LFSR_S0 = LFSR_S1;

LFSR_S1 = LFSR_S2;

LFSR_S2 = LFSR_S3;

LFSR_S3 = LFSR_S4;

LFSR_S4 = LFSR_S5;

LFSR_S5 = LFSR_S6;

LFSR_S6 = LFSR_S7;

LFSR_S7 = LFSR_S8;

LFSR_S8 = LFSR_S9;

LFSR_S9 = LFSR_S10;

LFSR_S10 = LFSR_S11;

LFSR_S11 = LFSR_S12;

LFSR_S12 = LFSR_S13;

LFSR_S13 = LFSR_S14;

LFSR_S14 = LFSR_S15;

LFSR_S15 = f;

}

 

/* BitReorganization */

void BitReorganization()

{

BRC_X0 = ((LFSR_S15 & 0x7FFF8000) << 1) | (LFSR_S14 & 0xFFFF);

BRC_X1 = ((LFSR_S11 & 0xFFFF) << 16) | (LFSR_S9 >> 15);

BRC_X2 = ((LFSR_S7 & 0xFFFF) << 16) | (LFSR_S5 >> 15);

BRC_X3 = ((LFSR_S2 & 0xFFFF) << 16) | (LFSR_S0 >> 15);

}

 

#define ROT(a, k) (((a) << k) | ((a) >> (32 - k)))

 

/* L1 */

u32 L1(u32 X)

{

return (X ^ ROT(X, 2) ^ ROT(X, 10) ^ ROT(X, 18) ^ ROT(X, 24));

}

 

/* L2 */

u32 L2(u32 X)

{

return (X ^ ROT(X, 8) ^ ROT(X, 14) ^ ROT(X, 22) ^ ROT(X, 30));

}

 

#define MAKEU32(a, b, c, d) (((u32)(a) << 24) | ((u32)(b) << 16)

| ((u32)(c) << 8) | ((u32)(d)))

/* F */

u32 F()

{

u32 W, W1, W2, u, v;

W = (BRC_X0 ^ F_R1) + F_R2;

W1 = F_R1 + BRC_X1;

W2 = F_R2 ^ BRC_X2;

u = L1((W1 << 16) | (W2 >> 16));

v = L2((W2 << 16) | (W1 >> 16));

F_R1 = MAKEU32(S0[u >> 24], S1[(u >> 16) & 0xFF],

S0[(u >> 8) & 0xFF], S1[u & 0xFF]);

F_R2 = MAKEU32(S0[v >> 24], S1[(v >> 16) & 0xFF],

S0[(v >> 8) & 0xFF], S1[v & 0xFF]);

return W;

}

 

#define MAKEU31(a, b, c) (((u32)(a) << 23) | ((u32)(b) << 8) | (u32)(c))

 

/* initialize */

void Initialization(u8* k, u8* iv)

{

u32 w, nCount;

 

/* expand key */

LFSR_S0 = MAKEU31(k[0], EK_d[0], iv[0]);

LFSR_S1 = MAKEU31(k[1], EK_d[1], iv[1]);

LFSR_S2 = MAKEU31(k[2], EK_d[2], iv[2]);

LFSR_S3 = MAKEU31(k[3], EK_d[3], iv[3]);

LFSR_S4 = MAKEU31(k[4], EK_d[4], iv[4]);

LFSR_S5 = MAKEU31(k[5], EK_d[5], iv[5]);

LFSR_S6 = MAKEU31(k[6], EK_d[6], iv[6]);

LFSR_S7 = MAKEU31(k[7], EK_d[7], iv[7]);

LFSR_S8 = MAKEU31(k[8], EK_d[8], iv[8]);

LFSR_S9 = MAKEU31(k[9], EK_d[9], iv[9]);

LFSR_S10 = MAKEU31(k[10], EK_d[10], iv[10]);

LFSR_S11 = MAKEU31(k[11], EK_d[11], iv[11]);

LFSR_S12 = MAKEU31(k[12], EK_d[12], iv[12]);

LFSR_S13 = MAKEU31(k[13], EK_d[13], iv[13]);

LFSR_S14 = MAKEU31(k[14], EK_d[14], iv[14]);

LFSR_S15 = MAKEU31(k[15], EK_d[15], iv[15]);

 

/* set F_R1 and F_R2 to zero */

F_R1 = 0;

F_R2 = 0;

nCount = 32;

while (nCount > 0)

{

BitReorganization();

w = F();

LFSRWithInitialisationMode(w >> 1);

nCount --;

}

}

 

void GenerateKeystream(u32* pKeystream, int KeystreamLen)

{

int i;

 

{

 

BitReorganization();

F(); /* discard the output of F */

LFSRWithWorkMode();

}

 

for (i = 0; i < KeystreamLen; i ++)

{

BitReorganization();

pKeystream[i] = F() ^ BRC_X3;

LFSRWithWorkMode();

}

}

你可能感兴趣的:(加密算法,软件编程,算法,c语言,加密解密,密码学,lte)