V4L2(二)虚拟摄像头驱动vivi深入分析

本文基于:linux3.5

  前面一篇文章中,简单分析了 V4L2 大框架,本文借助内核中的虚拟摄像头驱动 vivi 来分析一个完整的摄像头驱动程序。vivi 相对于后面要分析的 usb 摄像头驱动程序,它没有真正的硬件相关层的操作,也就是说抛开了复杂的 usb 层的相关知识,便于理解 V4L2 驱动框架,侧重于驱动和应用的交互。

  前面我们提到,V4L2 的核心是 v4l2-dev.c 它向上提供统一的文件操作接口 v4l2_fops ,向下提供 video_device 注册接口 register_video_device ,作为一个具体的驱动,需要做的工作就是分配、设置、注册一个 video_device.框架很简单,复杂的是视频设备相关众多的 ioctl。

一、vivi 框架分析

static int __init vivi_init(void)
{
	ret = vivi_create_instance(i);
	...
	return ret;
}
module_init(vivi_init);

  vivi 分配了一个 video_device 指针,没有去设置而是直接让它指向了一个现成的 video_device 结构 vivi_template ,那么全部的工作都将围绕 vivi_template 展开。

static int __init vivi_create_instance(int inst)
{
	struct vivi_dev *dev;
	struct video_device *vfd;
	struct v4l2_ctrl_handler *hdl;
	struct vb2_queue *q;

	// 分配一个 vivi_dev 结构体
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	
	// v4l2_dev 初始化,并没有什么作用
	ret = v4l2_device_register(NULL, &dev->v4l2_dev);
	
	// 设置 dev 的一些参数,比如图像格式、大小
	dev->fmt = &formats[0];
	dev->width = 640;
	dev->height = 480;
	dev->pixelsize = dev->fmt->depth / 8;
	...
	
	// vivi_dev->vb_vidq(vb2_queue) 初始化
	q = &dev->vb_vidq;
	memset(q, 0, sizeof(dev->vb_vidq));
	q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
	q->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ;
	q->drv_priv = dev;
	q->buf_struct_size = sizeof(struct vivi_buffer);
	
	// vivi_dev->vb_vidq(vb2_queue)->ops
	q->ops     = &vivi_video_qops;
	
	// vivi_dev->vb_vidq(vb2_queue)->mem_ops
	q->mem_ops = &vb2_vmalloc_memops;
	
	// 初始化一些锁之类的东西
	vb2_queue_init(q);

	/* init video dma queues */
	INIT_LIST_HEAD(&dev->vidq.active);
	init_waitqueue_head(&dev->vidq.wq);
	
	// 分配一个 video_device ,这才是重点
	vfd = video_device_alloc();

	*vfd = vivi_template;
	vfd->debug = debug;
	vfd->v4l2_dev = &dev->v4l2_dev;
	set_bit(V4L2_FL_USE_FH_PRIO, &vfd->flags);

	vfd->lock = &dev->mutex;
	
	// 注册 video_device !!!
	ret = video_register_device(vfd, VFL_TYPE_GRABBER, video_nr);
	// 把 vivi_dev 放入 video_device->dev->p->driver_data ,这个后边经常用到
	video_set_drvdata(vfd, dev);

	/* Now that everything is fine, let's add it to device list */
	list_add_tail(&dev->vivi_devlist, &vivi_devlist);

	if (video_nr != -1)
		video_nr++;
	// vivi_dev->vfd(video_device) =  vfd
	dev->vfd = vfd;
	v4l2_info(&dev->v4l2_dev, "V4L2 device registered as %s\n",
		  video_device_node_name(vfd));
	return 0;
}
  用户空间调用的是 v4l2_fops ,但是最终会调用到 vivi_fops ,vivi_fops 中的 ioctl 调用 video_ioctl2
static struct video_device vivi_template = {
	.name		= "vivi",
	.fops           = &vivi_fops,
	.ioctl_ops 	= &vivi_ioctl_ops,
	.minor		= -1,
	.release	= video_device_release,

	.tvnorms              = V4L2_STD_525_60,
	.current_norm         = V4L2_STD_NTSC_M,
};

  video_register_device 过程就不详细分析了,前面的文章中分析过,大概就是向核心层注册 video_device 结构体,核心层注册字符设备并提供一个统一的 fops ,当用户空间 read write ioctl 等,最终还是会跳转到 video_device->fops ,还有一点就是核心层会把我们注册进来的 video_device 结构放入一个全局的 video_device数组。

static const struct v4l2_file_operations vivi_fops = {
	.owner		= THIS_MODULE,
	.open           = v4l2_fh_open,
	.release        = vivi_close,
	.read           = vivi_read,
	.poll		= vivi_poll,
	.unlocked_ioctl = video_ioctl2, /* V4L2 ioctl handler */
	.mmap           = vivi_mmap,
};
  这里,先看一下 v4l2_fh_open 函数
int v4l2_fh_open(struct file *filp)
{
  // 前面注册时,我们将 video_device 结构体放入了全局数组 video_device ,现在通过     video_devdata 函数取出来,后面经常用到这种做法
    struct video_device *vdev = video_devdata(filp);
    // 分配一个 v4l2_fh 结构,放入file->private_data 中
    struct v4l2_fh *fh = kzalloc(sizeof(*fh), GFP_KERNEL);
    filp->private_data = fh;
    if (fh == NULL)
        return -ENOMEM;
    v4l2_fh_init(fh, vdev);
    v4l2_fh_add(fh);
    return 0;
}
  1、我们随时可以通过 video_devdata 取出我们注册的 video_device 结构进行操作

  2、我们随时可以通过 file->private_data 取出 v4l2_fh 结构,虽然现在还不知道它有啥用

  下面来分析 ioctl ...首先来看一下调用过程 

long video_ioctl2(struct file *file,
	       unsigned int cmd, unsigned long arg)
{
	return video_usercopy(file, cmd, arg, __video_do_ioctl);
}
static long __video_do_ioctl(struct file *file,
		unsigned int cmd, void *arg)
{
	struct video_device *vfd = video_devdata(file);
	const struct v4l2_ioctl_ops *ops = vfd->ioctl_ops;
	void *fh = file->private_data;
	struct v4l2_fh *vfh = NULL;
	int use_fh_prio = 0;
	long ret = -ENOTTY;

	if (ops == NULL) {
		printk(KERN_WARNING "videodev: \"%s\" has no ioctl_ops.\n",
				vfd->name);
		return ret;
	}

	if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
		vfh = file->private_data;
		use_fh_prio = test_bit(V4L2_FL_USE_FH_PRIO, &vfd->flags);
	}

	if (v4l2_is_known_ioctl(cmd)) {
		struct v4l2_ioctl_info *info = &v4l2_ioctls[_IOC_NR(cmd)];

	        if (!test_bit(_IOC_NR(cmd), vfd->valid_ioctls) &&
		    !((info->flags & INFO_FL_CTRL) && vfh && vfh->ctrl_handler))
			return -ENOTTY;

		if (use_fh_prio && (info->flags & INFO_FL_PRIO)) {
			ret = v4l2_prio_check(vfd->prio, vfh->prio);
			if (ret)
				return ret;
		}
	}

	if ((vfd->debug & V4L2_DEBUG_IOCTL) &&
				!(vfd->debug & V4L2_DEBUG_IOCTL_ARG)) {
		v4l_print_ioctl(vfd->name, cmd);
		printk(KERN_CONT "\n");
	}

	switch (cmd) {

	/* --- capabilities ------------------------------------------ */
	case VIDIOC_QUERYCAP:
	{
		struct v4l2_capability *cap = (struct v4l2_capability *)arg;

		cap->version = LINUX_VERSION_CODE;
		ret = ops->vidioc_querycap(file, fh, cap);
		if (!ret)
			dbgarg(cmd, "driver=%s, card=%s, bus=%s, "
					"version=0x%08x, "
					"capabilities=0x%08x, "
					"device_caps=0x%08x\n",
					cap->driver, cap->card, cap->bus_info,
					cap->version,
					cap->capabilities,
					cap->device_caps);
		break;
	}

  vivi 驱动就复杂在这些 ioctl 上,下面按照应用层与驱动的交互顺序来具体的分析这些 ioctl 。

二、ioctl 深入分析

  应用空间的一个视频 app 与驱动的交互流程大致如下图所示:

V4L2(二)虚拟摄像头驱动vivi深入分析_第1张图片
  下面就根据流程,分析每一个 ioctl 在 vivi 中的具体实现。把以上的过程吃透,自己写一个虚拟摄像头程序应该就不成问题了。
V4L2(二)虚拟摄像头驱动vivi深入分析_第2张图片

 2.1 VIDIOC_QUERYCAP 查询设备能力

应用层:

struct v4l2_capability {
    __u8	driver[16];	/* i.e. "bttv" */
    __u8	card[32];	/* i.e. "Hauppauge WinTV" */
    __u8	bus_info[32];	/* "PCI:" + pci_name(pci_dev) */
    __u32   version;        	/* should use KERNEL_VERSION() */
    __u32	capabilities;	/* Device capabilities */
    __u32	reserved[4];
};

struct v4l2_capability cap;
ret = ioctl(fd,VIDIOC_QUERYCAP,&cap);
if (ret < 0) {
	LOG("VIDIOC_QUERYCAP failed (%d)\n", ret);
	return ret;
}
驱动层:
void *fh = file->private_data;
ops->vidioc_querycap(file, fh, cap);
static int vidioc_querycap(struct file *file, void  *priv, struct v4l2_capability *cap)
{
    struct vivi_fh  *fh  = priv;
    struct vivi_dev *dev = fh->dev;


    // 这里只是将一些信息写回用户空间而已,非常简单
    strcpy(cap->driver, "vivi");  
    strcpy(cap->card, "vivi");
    strlcpy(cap->bus_info, dev->v4l2_dev.name, sizeof(cap->bus_info));
    cap->version =     VIVI_VERSION; cap->capabilities =V4L2_CAP_VIDEO_CAPTURE |V4L2_CAP_STREAMING     | V4L2_CAP_READWRITE;return 0;}
}
 
    一般我们只关心 capabilities 成员,比如V4L2_CAP_VIDEO_CAPTURE 具有视频捕获能力,其它定义如下: 
  
/* Values for 'capabilities' field */
#define V4L2_CAP_VIDEO_CAPTURE		0x00000001  /* Is a video capture device */
#define V4L2_CAP_VIDEO_OUTPUT		0x00000002  /* Is a video output device */
#define V4L2_CAP_VIDEO_OVERLAY		0x00000004  /* Can do video overlay */
#define V4L2_CAP_VBI_CAPTURE		0x00000010  /* Is a raw VBI capture device */
#define V4L2_CAP_VBI_OUTPUT		0x00000020  /* Is a raw VBI output device */
#define V4L2_CAP_SLICED_VBI_CAPTURE	0x00000040  /* Is a sliced VBI capture device */
#define V4L2_CAP_SLICED_VBI_OUTPUT	0x00000080  /* Is a sliced VBI output device */
#define V4L2_CAP_RDS_CAPTURE		0x00000100  /* RDS data capture */
#define V4L2_CAP_VIDEO_OUTPUT_OVERLAY	0x00000200  /* Can do video output overlay */
#define V4L2_CAP_HW_FREQ_SEEK		0x00000400  /* Can do hardware frequency seek  */
#define V4L2_CAP_RDS_OUTPUT		0x00000800  /* Is an RDS encoder */
 2.2 VIDIOC_ENUM_FMT 枚举(查询)设备支持的视频格式

应用层:

struct v4l2_fmtdesc {
	__u32		    index;             /* Format number      */
	enum v4l2_buf_type  type;              /* buffer type        */
	__u32               flags;
	__u8		    description[32];   /* Description string */
	__u32		    pixelformat;       /* Format fourcc      */
	__u32		    reserved[4];
};

struct v4l2_fmtdesc fmtdesc;
fmtdesc.index=0;
fmtdesc.type=V4L2_BUF_TYPE_VIDEO_CAPTURE;
while(ioctl(fd,VIDIOC_ENUM_FMT,&fmtdesc)!=-1)
{
	printf("SUPPORT\t%d.%s\n",fmtdesc.index+1,fmtdesc.description);
	fmtdesc.index++;
}
驱动层:
static struct vivi_fmt formats[] = {
	{
		.name     = "4:2:2, packed, YUYV",
		.fourcc   = V4L2_PIX_FMT_YUYV,
		.depth    = 16,
	},
    ...
}
static int vidioc_enum_fmt_vid_cap(struct file *file, void  *priv,
					struct v4l2_fmtdesc *f)
{
	struct vivi_fmt *fmt;

	if (f->index >= ARRAY_SIZE(formats))
		return -EINVAL;

	fmt = &formats[f->index];

	strlcpy(f->description, fmt->name, sizeof(f->description));
	f->pixelformat = fmt->fourcc;
	return 0;
}
  一般一个设备支持多种视频格式,比如 vivi 它所支持的格式存放在 formats 数组中,由于应用层并不知道设备支持多少种格式,也不知道某种格式具体存放在哪个数组项中,因此通过index从0开始尝试,对于驱动层来说就是遍历所有的数组项,返回每一个index对应的视频格式,比如 V4L2_PIX_FMT_YUYV .

 2.3 VIDIOC_S_FMT 设置视频格式

应用层:

struct v4l2_format {
	enum v4l2_buf_type type;
	union {
		struct v4l2_pix_format		pix;     /* V4L2_BUF_TYPE_VIDEO_CAPTURE */
		struct v4l2_window		win;     /* V4L2_BUF_TYPE_VIDEO_OVERLAY */
		struct v4l2_vbi_format		vbi;     /* V4L2_BUF_TYPE_VBI_CAPTURE */
		struct v4l2_sliced_vbi_format	sliced;  /* V4L2_BUF_TYPE_SLICED_VBI_CAPTURE */
		__u8	raw_data[200];                   /* user-defined */
	} fmt;
};
struct v4l2_pix_format {
	__u32         		width;
	__u32			height;
	__u32			pixelformat;
	enum v4l2_field  	field;
	__u32            	bytesperline;	/* for padding, zero if unused */
	__u32          		sizeimage;
	enum v4l2_colorspace	colorspace;
	__u32			priv;		/* private data, depends on pixelformat */
};
struct v4l2_format fmt;
memset(&fmt, 0, sizeof(fmt));
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;//格式类型
fmt.fmt.pix.width //宽度
fmt.fmt.pix.height //高度
fmt.fmt.pix.pixelformat = VIDEO_FORMAT;//这一项必须是前面查询出来的某种格式,对应 vivi formats数组
fmt.fmt.pix.field       = V4L2_FIELD_INTERLACED;//好像是隔行扫描的意思
ret = ioctl(fd, VIDIOC_S_FMT, &fmt);
if (ret < 0) {
	LOG("VIDIOC_S_FMT failed (%d)\n", ret);
	return ret;
}
驱动层:
static int vidioc_s_fmt_vid_cap(struct file *file, void *priv,
					struct v4l2_format *f)
{
	struct vivi_dev *dev = video_drvdata(file);
	struct vb2_queue *q = &dev->vb_vidq;

	int ret = vidioc_try_fmt_vid_cap(file, priv, f);
	//if (fmt->fourcc == f->fmt.pix.pixelformat)返回formats[k]
	dev->fmt = get_format(f);
	dev->pixelsize 	= dev->fmt->depth / 8;
	dev->width 		= f->fmt.pix.width;
	dev->height 	= f->fmt.pix.height;
	dev->field 		= f->fmt.pix.field;

	return 0;
}
static int vidioc_try_fmt_vid_cap(struct file *file, void *priv,
			struct v4l2_format *f)
{
	struct vivi_dev *dev = video_drvdata(file);
	struct vivi_fmt *fmt;
	enum v4l2_field field;

	fmt = get_format(f);

	field = f->fmt.pix.field;

	if (field == V4L2_FIELD_ANY) {
		field = V4L2_FIELD_INTERLACED;
	} 

	f->fmt.pix.field = field;
	v4l_bound_align_image(&f->fmt.pix.width, 48, MAX_WIDTH, 2,
			      &f->fmt.pix.height, 32, MAX_HEIGHT, 0, 0);
	f->fmt.pix.bytesperline =
		(f->fmt.pix.width * fmt->depth) >> 3;
	f->fmt.pix.sizeimage =
		f->fmt.pix.height * f->fmt.pix.bytesperline;
	if (fmt->fourcc == V4L2_PIX_FMT_YUYV ||
	    fmt->fourcc == V4L2_PIX_FMT_UYVY)
		f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
	else
		f->fmt.pix.colorspace = V4L2_COLORSPACE_SRGB;
	return 0;
}
  这里将应用层传进来的视频格式简单处理后存放进了一个 vivi_dev 结构,vivi_dev 哪里来的呢?,在一开始的时候 vivi_create_instance ,我们创建了一个 video_device 结构代表我们的设备,并设置了一个 vivi_dev 作为 video_device->dev->privatedata ,之后 register_video_device ,内核会自动将我们的 video_device 放入全局数组 video_device[] 中。

 2.4 VIDIOC_G_FMT 获得设置好的视频格式

应用层:

ret = ioctl(fd, VIDIOC_G_FMT, &fmt);
if (ret < 0) {
	LOG("VIDIOC_G_FMT failed (%d)\n", ret);
	return ret;
}
// Print Stream Format
LOG("Stream Format Informations:\n");
LOG(" type: %d\n", fmt.type);
LOG(" width: %d\n", fmt.fmt.pix.width);
LOG(" height: %d\n", fmt.fmt.pix.height);
char fmtstr[8];
memset(fmtstr, 0, 8);
memcpy(fmtstr, &fmt.fmt.pix.pixelformat, 4);
LOG(" pixelformat: %s\n", fmtstr);
LOG(" field: %d\n", fmt.fmt.pix.field);
LOG(" bytesperline: %d\n", fmt.fmt.pix.bytesperline);
LOG(" sizeimage: %d\n", fmt.fmt.pix.sizeimage);
LOG(" colorspace: %d\n", fmt.fmt.pix.colorspace);
LOG(" priv: %d\n", fmt.fmt.pix.priv);
LOG(" raw_date: %s\n", fmt.fmt.raw_data);
驱动层:
static int vidioc_g_fmt_vid_cap(struct file *file, void *priv,
					struct v4l2_format *f)
{
	struct vivi_dev *dev = video_drvdata(file);
	// 把记录在 vivi_dev 中的参数写回用户空间
	f->fmt.pix.width        = dev->width;
	f->fmt.pix.height       = dev->height;
	f->fmt.pix.field        = dev->field;
	f->fmt.pix.pixelformat  = dev->fmt->fourcc;
	f->fmt.pix.bytesperline =
		(f->fmt.pix.width * dev->fmt->depth) >> 3;
	f->fmt.pix.sizeimage =
		f->fmt.pix.height * f->fmt.pix.bytesperline;
	if (dev->fmt->fourcc == V4L2_PIX_FMT_YUYV ||
	    dev->fmt->fourcc == V4L2_PIX_FMT_UYVY)
		f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
	else
		f->fmt.pix.colorspace = V4L2_COLORSPACE_SRGB;
	return 0;
}
  将我们之前设置的格式返回而已。
  2.5 VIDIOC_REQBUFS 请求在内核空间分配视频缓冲区
    分配的内存位于内核空间,应用程序无法直接访问,需要通过调用mmap内存映射函数,把内核空间的内存映射到用户空间,应用才可以用用户空间地址来访问内核空间。
应用层:

struct v4l2_requestbuffers {
	__u32			count;
	__u32			type;		/* enum v4l2_buf_type */
	__u32			memory;		/* enum v4l2_memory */
	__u32			reserved[2];
};
struct v4l2_requestbuffers reqbuf;
reqbuf.type 	= V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory 	= V4L2_MEMORY_MMAP;
reqbuf.count 	= BUFFER_COUNT;
ret = ioctl(fd , VIDIOC_REQBUFS, &reqbuf);
if(ret < 0) {
	LOG("VIDIOC_REQBUFS failed (%d)\n", ret);
	return ret;
}
驱动层:
static int vidioc_reqbufs(struct file *file, void *priv,
			  struct v4l2_requestbuffers *p)
{
	struct vivi_dev *dev = video_drvdata(file);
	return vb2_reqbufs(&dev->vb_vidq, p);	//核心层提供的标准函数
}

  vb_vidq 是 vivi_dev 的一个成员,前面我们提到它有两个 ops ,一个是 ops 另一个是 mem_ops

static struct vb2_ops vivi_video_qops = {
	.queue_setup	= queue_setup,
	.buf_init		= buffer_init,
	.buf_prepare	= buffer_prepare,
	.buf_finish			= buffer_finish,
	.buf_cleanup		= buffer_cleanup,
	.buf_queue		= buffer_queue,
	.start_streaming= start_streaming,
	.stop_streaming		= stop_streaming,
	.wait_prepare		= vivi_unlock,
	.wait_finish		= vivi_lock,
};
static int vidioc_reqbufs(struct file *file, void *priv,
			  struct v4l2_requestbuffers *p)
{
	struct vivi_dev *dev = video_drvdata(file);
	return vb2_reqbufs(&dev->vb_vidq, p);	//核心层提供的标准函数
}
int vb2_reqbufs(struct vb2_queue *q, struct v4l2_requestbuffers *req)
{
	unsigned int num_buffers, allocated_buffers, num_planes = 0;
	int ret = 0;
	// 判断 re->count 是否小于 VIDEO_MAX_FRAME
	num_buffers = min_t(unsigned int, req->count, VIDEO_MAX_FRAME);
	memset(q->plane_sizes, 0, sizeof(q->plane_sizes));
	memset(q->alloc_ctx, 0, sizeof(q->alloc_ctx));
	q->memory = req->memory;

	//(q)->ops->queue_setup(q,NULL,...)
	ret = call_qop(q, queue_setup, q, NULL, &num_buffers, &num_planes,
		       q->plane_sizes, q->alloc_ctx);
	/* Finally, allocate buffers and video memory */
	ret = __vb2_queue_alloc(q, req->memory, num_buffers, num_planes);

	allocated_buffers = ret;

	q->num_buffers = allocated_buffers;
	req->count = allocated_buffers;
	return 0;
}
static int queue_setup(struct vb2_queue *vq, const struct v4l2_format *fmt,
				unsigned int *nbuffers, unsigned int *nplanes,
				unsigned int sizes[], void *alloc_ctxs[])
{
	struct vivi_dev *dev = vb2_get_drv_priv(vq);
	unsigned long size;
	// 每一个buffer 的大小
	size = dev->width * dev->height * dev->pixelsize;
	if (0 == *nbuffers)
		*nbuffers = 32;
	// 如果申请的buffer过多,导致空间不够减少buffer
	while (size * *nbuffers > vid_limit * 1024 * 1024)
		(*nbuffers)--;
	*nplanes = 1;
	// 把总大小放入 vivi_dev->vb_vidq->plane_size[0]
	sizes[0] = size;
	return 0;
}
static int __vb2_queue_alloc(struct vb2_queue *q, enum v4l2_memory memory,
			     unsigned int num_buffers, unsigned int num_planes)
{
	unsigned int buffer;
	struct vb2_buffer *vb;
	int ret;
	// 分配多个 vb2_buffer 填充并放入 vivi_dev->vb_vidq->bufs[]
	for (buffer = 0; buffer < num_buffers; ++buffer) {
		/* Allocate videobuf buffer structures */
		vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
		
		/* Length stores number of planes for multiplanar buffers */
		if (V4L2_TYPE_IS_MULTIPLANAR(q->type))
			vb->v4l2_buf.length = num_planes;

		vb->state = VB2_BUF_STATE_DEQUEUED;
		vb->vb2_queue = q;
		vb->num_planes = num_planes;
		vb->v4l2_buf.index = q->num_buffers + buffer;
		vb->v4l2_buf.type = q->type;
		vb->v4l2_buf.memory = memory;

		/* Allocate video buffer memory for the MMAP type */
		if (memory == V4L2_MEMORY_MMAP) {
			ret = __vb2_buf_mem_alloc(vb);//核心提供的标准函数
			ret = call_qop(q, buf_init, vb);//q->ops->buf_init
		}

		q->bufs[q->num_buffers + buffer] = vb;
	}
	__setup_offsets(q, buffer);
	return buffer;
}
static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
{
	struct vb2_queue *q = vb->vb2_queue;
	void *mem_priv;
	int plane;

	/* num_planes == 1 */
	for (plane = 0; plane < vb->num_planes; ++plane) {
		mem_priv = call_memop(q, alloc, q->alloc_ctx[plane],
				      q->plane_sizes[plane]);

		/* Associate allocator private data with this plane */
		vb->planes[plane].mem_priv = mem_priv;
		vb->v4l2_planes[plane].length = q->[plane];
	}

	return 0;
}
static void *vb2_vmalloc_alloc(void *alloc_ctx, unsigned long size)
{
	struct vb2_vmalloc_buf *buf;

	buf = kzalloc(sizeof(*buf), GFP_KERNEL);

	buf->size = size;
	// 分配空间
	buf->vaddr = vmalloc_user(buf->size);
	buf->handler.refcount = &buf->refcount;
	buf->handler.put = vb2_vmalloc_put;
	buf->handler.arg = buf;

	atomic_inc(&buf->refcount);
	return buf;
}

  2.6 VIDIOC_QUERYBUF 查询分配好的 buffer 信息
    查询已经分配好的V4L2视频缓冲区的相关信息,包括缓冲区的使用状态、在内核空间的偏移地址、缓冲区长度等,然后应用程序根据这些信息使用mmap把内核空间地址映射到用户空间。
应用层:

struct v4l2_buffer {
	__u32					index;
	enum v4l2_buf_type  	type;
	__u32					bytesused;
	__u32					flags;
	enum v4l2_field			field;
	struct timeval			timestamp;
	struct v4l2_timecode	timecode;
	__u32					sequence;

	/* memory location */
	enum v4l2_memory        memory;
	union {
		__u32           	offset;
		unsigned long   	userptr;
	} m;
	__u32					length;
	__u32					input;
	__u32					reserved;
};
v4l2_buffer buf;
buf.index = i;
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
ret = ioctl(fd , VIDIOC_QUERYBUF, &buf);
if(ret < 0) {
	LOG("VIDIOC_QUERYBUF (%d) failed (%d)\n", i, ret);
	return ret;
}
驱动层:
ops->vidioc_querybuf(file, fh, p);
static int vidioc_querybuf(struct file *file, void *priv, struct v4l2_buffer *p)
{
	struct vivi_dev *dev = video_drvdata(file);
	return vb2_querybuf(&dev->vb_vidq, p);
}
int vb2_querybuf(struct vb2_queue *q, struct v4l2_buffer *b)
{
	struct vb2_buffer *vb;
	// 取出 buf
	vb = q->bufs[b->index];
	// 将 buf 信息写回用户空间传递的 b
	return __fill_v4l2_buffer(vb, b);
}
static int __fill_v4l2_buffer(struct vb2_buffer *vb, struct v4l2_buffer *b)
{
	struct vb2_queue *q = vb->vb2_queue;
	int ret;

	/* Copy back data such as timestamp, flags, input, etc. */
	memcpy(b, &vb->v4l2_buf, offsetof(struct v4l2_buffer, m));
	b->input = vb->v4l2_buf.input;
	b->reserved = vb->v4l2_buf.reserved;

	if (V4L2_TYPE_IS_MULTIPLANAR(q->type)) {
		ret = __verify_planes_array(vb, b);
		if (ret)
			return ret;

		/*
		 * Fill in plane-related data if userspace provided an array
		 * for it. The memory and size is verified above.
		 */
		memcpy(b->m.planes, vb->v4l2_planes,
			b->length * sizeof(struct v4l2_plane));

		if (q->memory == V4L2_MEMORY_DMABUF) {
			unsigned int plane;
			for (plane = 0; plane < vb->num_planes; ++plane)
				b->m.planes[plane].m.fd = 0;
		}
	} else {
		/*
		 * We use length and offset in v4l2_planes array even for
		 * single-planar buffers, but userspace does not.
		 */
		b->length = vb->v4l2_planes[0].length;
		b->bytesused = vb->v4l2_planes[0].bytesused;
		if (q->memory == V4L2_MEMORY_MMAP)
			b->m.offset = vb->v4l2_planes[0].m.mem_offset;
		else if (q->memory == V4L2_MEMORY_USERPTR)
			b->m.userptr = vb->v4l2_planes[0].m.userptr;
		else if (q->memory == V4L2_MEMORY_DMABUF)
			b->m.fd = 0;
	}

	/*
	 * Clear any buffer state related flags.
	 */
	b->flags &= ~V4L2_BUFFER_STATE_FLAGS;

	switch (vb->state) {
	case VB2_BUF_STATE_QUEUED:
	case VB2_BUF_STATE_ACTIVE:
		b->flags |= V4L2_BUF_FLAG_QUEUED;
		break;
	case VB2_BUF_STATE_ERROR:
		b->flags |= V4L2_BUF_FLAG_ERROR;
		/* fall through */
	case VB2_BUF_STATE_DONE:
		b->flags |= V4L2_BUF_FLAG_DONE;
		break;
	case VB2_BUF_STATE_PREPARED:
		b->flags |= V4L2_BUF_FLAG_PREPARED;
		break;
	case VB2_BUF_STATE_DEQUEUED:
		/* nothing */
		break;
	}

	if (__buffer_in_use(q, vb))
		b->flags |= V4L2_BUF_FLAG_MAPPED;

	return 0;
}
2.7 mmap
应用层:

v4l2_buffer framebuf[]
framebuf[i].length = buf.length;
framebuf[i].start = (char *) mmap(
	NULL, 		// 欲指向内存的起始地址,一般为NULL,表示系统自动分配
	buf.length,	//映射长度
	PROT_READ|PROT_WRITE, 	//可读可写
	MAP_SHARED, 	//对映射区的读写会写回内核空间,而且允许其它映射该内核空间地址的进程共享
	fd, 
	buf.m.offset
);
if (framebuf[i].start == MAP_FAILED) {
	LOG("mmap (%d) failed: %s\n", i, strerror(errno));
	return -1;
}
驱动层:
static int vivi_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct vivi_dev *dev = video_drvdata(file);
	int ret;
	ret = vb2_mmap(&dev->vb_vidq, vma);//核心层提供的函数
	return ret;
}
2.8 VIDIOC_QBUF 
  投放一个空的视频缓冲区到视频缓冲区输入队列,执行成功后,在启动视频设备拍摄图像时,相应的视频数据被保存到视频输入队列相应的视频缓冲区中。
应用层:

ret = ioctl(fd , VIDIOC_QBUF, &buf);
if (ret < 0) {
	LOG("VIDIOC_QBUF (%d) failed (%d)\n", i, ret);
	return -1;
驱动层:
static int vidioc_qbuf(struct file *file, void *priv, struct v4l2_buffer *p)
{
	struct vivi_dev *dev = video_drvdata(file);
	return vb2_qbuf(&dev->vb_vidq, p);
}
int vb2_qbuf(struct vb2_queue *q, struct v4l2_buffer *b)
{
	struct rw_semaphore *mmap_sem = NULL;
	struct vb2_buffer *vb;
	int ret = 0;

	vb = q->bufs[b->index];

	switch (vb->state) {
	case VB2_BUF_STATE_DEQUEUED:
		ret = __buf_prepare(vb, b);
	}
	// 将这个 buffer 挂入 q->queued_list
	list_add_tail(&vb->queued_entry, &q->queued_list);
	vb->state = VB2_BUF_STATE_QUEUED;

	if (q->streaming)
		__enqueue_in_driver(vb);

	/* Fill buffer information for the userspace */
	__fill_v4l2_buffer(vb, b);

unlock:
	if (mmap_sem)
		up_read(mmap_sem);
	return ret;
}
  实质上就是取出一个 vb2_buffer 挂入 vivi_dev->vb_vidq->queued_list
2.9 VIDIOC_STREAMON
应用层:

enum v4l2_buf_type type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ret = ioctl(fd, VIDIOC_STREAMON, &type);
if (ret < 0) {
	LOG("VIDIOC_STREAMON failed (%d)\n", ret);
	return ret;
}
驱动层:
static int vidioc_streamon(struct file *file, void *priv, enum v4l2_buf_type i)
{
	struct vivi_dev *dev = video_drvdata(file);
	return vb2_streamon(&dev->vb_vidq, i);
}
int vb2_streamon(struct vb2_queue *q, enum v4l2_buf_type type)
{
	struct vb2_buffer *vb;
	int ret;
	vb->state = VB2_BUF_STATE_ACTIVE;
	// 在 queued_list 链表中取出每一个 buffer 调用buffer queue,对于vivi来说就是放入 vidq->active 链表
	list_for_each_entry(vb, &q->queued_list, queued_entry)
            __enqueue_in_driver(vb);
	ret = call_qop(q, start_streaming, q, atomic_read(&q->queued_count));

	q->streaming = 1;
	return 0;
}
static void __enqueue_in_driver(struct vb2_buffer *vb)
{
    struct vb2_queue *q = vb->vb2_queue;
    vb->state = VB2_BUF_STATE_ACTIVE;

    /* sync buffers */
    for (plane = 0; plane < vb->num_planes; ++plane)
    call_memop(q, prepare, vb->planes[plane].mem_priv);

    q->ops->buf_queue(vb);//    list_add_tail(&buf->list, &vidq->active);    
}
static int start_streaming(struct vb2_queue *vq, unsigned int count)
{
	struct vivi_dev *dev = vb2_get_drv_priv(vq);
	dprintk(dev, 1, "%s\n", __func__);
	return vivi_start_generating(dev);
}
static int vivi_start_generating(struct vivi_dev *dev)
{
	struct vivi_dmaqueue *dma_q = &dev->vidq;

	/* Resets frame counters */
	dev->ms = 0;
	dev->mv_count = 0;
	dev->jiffies = jiffies;

	dma_q->frame = 0;
	dma_q->ini_jiffies = jiffies;
	// 创建一个内核线程,入口函数 vivi_thread
	dma_q->kthread = kthread_run(vivi_thread, dev, dev->v4l2_dev.name);
	
	/* Wakes thread */
	wake_up_interruptible(&dma_q->wq);

	return 0;
}
static int vivi_thread(void *data)
{
	struct vivi_dev *dev = data;

	dprintk(dev, 1, "thread started\n");

	set_freezable();

	for (;;) {
		vivi_sleep(dev);

		if (kthread_should_stop())
			break;
	}
	dprintk(dev, 1, "thread: exit\n");
	return 0;
}
static void vivi_sleep(struct vivi_dev *dev)
{
	struct vivi_dmaqueue *dma_q = &dev->vidq;
	int timeout;
	DECLARE_WAITQUEUE(wait, current);

	add_wait_queue(&dma_q->wq, &wait);
	if (kthread_should_stop())
		goto stop_task;

	/* Calculate time to wake up */
	timeout = msecs_to_jiffies(frames_to_ms(1));

	vivi_thread_tick(dev);

	schedule_timeout_interruptible(timeout);

stop_task:
	remove_wait_queue(&dma_q->wq, &wait);
	try_to_freeze();
}
  每次调用 vivi_sleep 这个线程都被挂入等待队列,调用 vivi_thread_tick 填充数据,然后休眠指定的时间自动唤醒,一直循环下去。这样就生成了一帧一帧的视频数据。
static void vivi_thread_tick(struct vivi_dev *dev)
{
	struct vivi_dmaqueue *dma_q = &dev->vidq;
	struct vivi_buffer *buf;
	unsigned long flags = 0;

	spin_lock_irqsave(&dev->slock, flags);

	buf = list_entry(dma_q->active.next, struct vivi_buffer, list);
	list_del(&buf->list);
	spin_unlock_irqrestore(&dev->slock, flags);

	do_gettimeofday(&buf->vb.v4l2_buf.timestamp);

	/* 填充Buffer */
	vivi_fillbuff(dev, buf);

	vb2_buffer_done(&buf->vb, VB2_BUF_STATE_DONE);
}
void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
{
	struct vb2_queue *q = vb->vb2_queue;
	unsigned long flags;
	unsigned int plane;

	/* sync buffers */
	for (plane = 0; plane < vb->num_planes; ++plane)
		call_memop(q, finish, vb->planes[plane].mem_priv);

	/* Add the buffer to the done buffers list */
	spin_lock_irqsave(&q->done_lock, flags);
	vb->state = state;
	list_add_tail(&vb->done_entry, &q->done_list);
	atomic_dec(&q->queued_count);
#ifdef CONFIG_SYNC
	sw_sync_timeline_inc(q->timeline, 1);
#endif
	spin_unlock_irqrestore(&q->done_lock, flags);

	/* 应用程序select 时 poll_wait 里休眠,现在有数据了唤醒 */
	wake_up(&q->done_wq);
}
  开始的时候我们将以一个 vb_buffer 挂入 vb_vidq->queued_list ,当启动视频传输之后,它被取出挂入 vb_vidq->vidq->active 队列,然后在内核线程中每一个 tick ,又将它取出填充视频数据之后,再挂入 vb_vidq->done_list ,唤醒正在休眠等待视频数据的应用程序。
2.10 select
驱动层:

vivi_poll(struct file *file, struct poll_table_struct *wait)
{
	struct vivi_dev *dev = video_drvdata(file);
	struct vb2_queue *q = &dev->vb_vidq;

	return vb2_poll(q, file, wait);
}
unsigned int vb2_poll(struct vb2_queue *q, struct file *file, poll_table *wait)
{
	// 挂入休眠队列,是否休眠还要看返回值,大概没有数据就休眠,有数据就不休眠
	poll_wait(file, &q->done_wq, wait);

	if (!list_empty(&q->done_list))
		vb = list_first_entry(&q->done_list, struct vb2_buffer,
					done_entry);
	spin_unlock_irqrestore(&q->done_lock, flags);

	if (vb && (vb->state == VB2_BUF_STATE_DONE
			|| vb->state == VB2_BUF_STATE_ERROR)) {
		return (V4L2_TYPE_IS_OUTPUT(q->type)) ?
				res | POLLOUT | POLLWRNORM :
				res | POLLIN | POLLRDNORM;
	}
	return res;
}
  唤醒之后,我们就可以去从视频输出队列中取出buffer,然后根据映射关系,在应用空间取出视频数据了
2.11 VIDIOC_DQBUF
应用层:

ret = ioctl(fd, VIDIOC_DQBUF, &buf);
if (ret < 0) {
	LOG("VIDIOC_DQBUF failed (%d)\n", ret);
	return ret;
}
static int vidioc_dqbuf(struct file *file, void *priv, struct v4l2_buffer *p)
{
	struct vivi_dev *dev = video_drvdata(file);
	return vb2_dqbuf(&dev->vb_vidq, p, file->f_flags & O_NONBLOCK);
}
int vb2_dqbuf(struct vb2_queue *q, struct v4l2_buffer *b, bool nonblocking)
{
	struct vb2_buffer *vb = NULL;
	int ret;
	// 等待在 q->done_list 取出第一个可用的 buffer
	ret = __vb2_get_done_vb(q, &vb, nonblocking);

	ret = call_qop(q, buf_finish, vb);

	/* 写回buffer的信息到用户空间,应用程序找个这个buffer的mmap之后的地址读数据 */
	__fill_v4l2_buffer(vb, b);
	/* Remove from videobuf queue */
	list_del(&vb->queued_entry);

	vb->state = VB2_BUF_STATE_DEQUEUED;
	return 0;
}
static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,int nonblocking)
{
    unsigned long flags;
    int ret;
    /*
    * Wait for at least one buffer to become available on the done_list.
    */
    ret = __vb2_wait_for_done_vb(q, nonblocking);


    spin_lock_irqsave(&q->done_lock, flags);
    *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
    list_del(&(*vb)->done_entry);
    spin_unlock_irqrestore(&q->done_lock, flags);
    return 0;
}
static int buffer_finish(struct vb2_buffer *vb)
{
	struct vivi_dev *dev = vb2_get_drv_priv(vb->vb2_queue);
	dprintk(dev, 1, "%s\n", __func__);
	return 0;
}




































你可能感兴趣的:(Linux,Kernel,Linux,Driver)