- 深度学习在环境感知中的应用:案例与代码实现
让机器学会“看”世界:深度学习如何赋能环境感知?关键词深度学习|环境感知|计算机视觉|传感器融合|语义分割|目标检测|自动驾驶摘要环境感知是机器与外界互动的“眼睛和耳朵”——从自动驾驶汽车识别行人,到智能机器人避开障碍物,再到城市监控系统检测异常,所有智能系统都需要先“理解”环境,才能做出决策。传统环境感知方法依赖手工特征提取,难以应对复杂场景;而深度学习通过数据驱动的方式,让机器从大量数据中自动
- 深入解析Hadoop中的Region分裂与合并机制
码字的字节
hadoop布道师hadoop大数据分布式Region分裂合并
Hadoop与Region的基本概念Hadoop的分布式架构基础作为大数据处理的核心框架,Hadoop通过分布式存储和计算解决了海量数据的处理难题。其架构核心由HDFS(HadoopDistributedFileSystem)和MapReduce组成,前者负责数据的分布式存储,后者实现分布式计算。在HDFS中,数据被分割成固定大小的块(默认128MB)分散存储在集群节点上,而MapReduce则通
- 深入解析Hadoop RPC:技术细节与推广应用
码字的字节
hadoop布道师HadoopRPC
HadoopRPC框架概述在分布式系统的核心架构中,远程过程调用(RPC)机制如同神经网络般连接着各个计算节点。Hadoop作为大数据处理的基石,其自主研发的RPC框架不仅支撑着内部组件的协同运作,更以独特的工程哲学诠释了分布式通信的本质。透明性:隐形的通信桥梁HadoopRPC最显著的特征是其对通信细节的完美封装。当NameNode接收DataNode的心跳检测,或ResourceManager
- 大数据领域HDFS的集群资源管理优化
大数据洞察
大数据与AI人工智能大数据AI应用大数据hdfshadoopai
大数据领域HDFS的集群资源管理优化关键词:HDFS;集群资源管理;存储优化;性能调优;副本策略;负载均衡;NameNode优化摘要:HDFS(Hadoop分布式文件系统)作为大数据领域的基石,承载着海量数据的存储与管理重任。随着数据规模爆炸式增长和业务复杂度提升,HDFS集群的资源管理面临着"存不下、跑不快、管不好"的三重挑战:存储资源浪费与不足并存、计算与存储资源匹配失衡、集群运维效率低下。本
- 深入探索Hadoop技术:全面学习指南
引言在大数据时代,高效地存储、处理和分析海量数据已成为企业决策与创新的关键驱动力。Hadoop,作为开源的大数据处理框架,以其强大的分布式存储和并行计算能力,以及丰富的生态系统,为企业提供了应对大规模数据挑战的有效解决方案。本文旨在为初学者和进阶者提供一份详尽的Hadoop技术学习指南,涵盖HDFS、MapReduce、YARN等核心组件,以及Hive、Pig、HBase等生态系统工具,助您踏上H
- 【PTA数据结构 | C语言版】求图中关键活动
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目请编写程序,实现求带权的有向图中关键活动的算法。输入格式:输入首先在第一行给出两个正整数,依次为当前要创建的图的顶点数n(≤100)和边数m。随后m行,每行给出一条有向边的起点编号、终点编号、权重。顶点编号从0开始,权重(≤100)为整数。同行数字均以一个空格分隔。输出格式:按格式输出关键活动,其中u为起点编号,v为终点编号。按起点编号的
- 【Elasticsearch】dfsPhase
`dfsPhase`(即DFS阶段)是在每个数据节点本地执行的,而不是在协调节点执行的。在Elasticsearch的查询流程中,`dfsPhase`是为了在进行“评分”时更准确地计算全局的term频率(TF-IDF),它需要先在每个数据节点上执行一次本地的DFS操作,收集该节点上每个字段的term统计信息(如docFreq、totalTermFreq),然后将这些信息回传给协调节点。协调节点再合
- 【PTA数据结构 | C语言版】求单源最短路的Dijkstra算法
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目请编写程序,实现在带权的有向图中求单源最短路的Dijkstra算法。注意:当多个待收录顶点路径等长时,按编号升序进行收录。输入格式:输入首先在第一行给出两个正整数,依次为当前要创建的图的顶点数n(≤100)和边数m。随后m行,每行给出一条有向边的起点编号、终点编号、权重。顶点编号从0开始,权重(≤100)为整数。同行数字均以一个空格分隔。
- [源码和文档分享]基于C++实现的教职工信息管理系统
ggdd5151
一、实验内容教职工信息管理系统用于管理教职工信息,能够根据工号、姓名、科室精确查询职工信息;能分系部进行职称统计,计算各职称的人数;根据职工的职称排序输出;根据工号修改或删除职工信息。二、运行环境软件环境操作系统:windows8.1开发环境:visualstudio2015硬件环境处理器:Intel(R)Core(TM)
[email protected]内存:4.00GB系统类
- 从5G到6G:AI算力网络将如何改变通信行业?
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构AI人工智能与大数据技术5G人工智能网络ai
从5G到6G:AI算力网络将如何改变通信行业?关键词:5G、6G、AI算力网络、边缘计算、智能编排、数字孪生、通信革命摘要:从2G打电话到3G刷网页,从4G看视频到5G连万物,通信技术的每一次跃迁都在重塑人类的生活方式。如今,5G已进入规模商用期,6G研发正如火如荼推进。本文将带您走进“连接+算力+智能”三位一体的未来通信世界,揭秘AI算力网络如何从“幕后助手”变为“核心引擎”,推动通信行业从“管
- 从比特币到DeFi:区块链如何重塑未来社会
L星际节点指挥官
区块链开发dapp公链开发区块链分布式账本零知识证明智能合约web3共识算法
引言:数字时代的信任之问在信息爆炸的数字时代,信任成为稀缺资源。从网络诈骗到数据泄露,从虚假新闻到平台垄断,传统中心化系统的脆弱性暴露无遗。当人们为支付安全焦虑、为隐私泄露愤怒、为信息真实性迷茫时,一种名为“区块链”的技术悄然崛起。它以去中心化的结构、不可篡改的账本和智能合约的自动执行,重新定义了信任的规则。区块链不仅是技术革命,更是对人类社会协作模式的深度重构。一、区块链的创世密码1.应运而生的
- 明天股市大盘走势预测
05ccd5c4766a
今天二市高开高走,截至收盘,二市均收出放量中阳线。其中北上资金流入超80亿,二市成交量1.08万亿,上涨家数2200余家,稀土、有色、煤炭、基因测序、食品等概念领涨二市。主力先是启动稀土、有色和煤炭率,把股指拉到3600点附近,而后启动券商银行保险等权重,一举突破3612-3622点间压力。从走势上看,明天会有一个回踩的过程。技术面看:沪市大盘60分钟图布林带上轨道线(3632点)向上倾斜牵引股指
- Docker-compose:服务编排
Docker-compose介绍服务编排:按照一定的业务规则批量管理容器在微服务架构的应用系统中,一般包含N个微服务,且每个微服务一般都会部署多个实例。此时,如果每个微服务都要手动启停,维护的工作量会很大。要从Dockerfilebuildimage或者去dockerhub拉取image要创建多个container要管理这些container(启动/停止/删除)...Docker-composeD
- 基于YOLOv8的Web端交互式目标检测系统设计与实现
YOLO实战营
YOLO前端目标检测人工智能ui目标跟踪计算机视觉
1.引言目标检测是计算机视觉领域的一项重要任务,它在安防监控、自动驾驶、医疗影像分析等领域有着广泛的应用。近年来,随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列算法因其出色的速度和精度平衡而备受关注。本文将详细介绍如何基于最新的YOLOv8模型构建一个Web端交互式目标检测系统,包含完整的UI界面设计和数据集处理流程。本系统将实现以下功能:基于YOLOv8的高效目标检测
- postgresql之语法解析 浅析
happytree001
pgpostgresql
一、pg语法简介1.1语法文件结构语法.y文件和词法.l文件结构差不多,也是通过%%分成了三个部分:声明部分、语法规则部分、C代码部分。src/backend/parser/gram.y####声明部分%{C代码头文件,变量声明等(此范围内的内容原样输出到文件中)#include"postgres.h"...%}#变量声明%union{core_YYSTYPEcore_yystype;/*thes
- 使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现
神经网络15044
算法python分类矩阵人工智能数据挖掘深度学习
使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景实例分割是计算机视觉领域的重要任务,它要求模型不仅要检测图像中的对象,还要精确地分割出每个对象的像素级掩码。近年来,基于Transformer的模型在实例分割任务上取得
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- 科学计算库Numpy
文章目录科学计算库Numpy一、numpy概述1.numpy`历史`2.numpy的核心:多维数组+数值计算二、Numpy基础ndarray数组1.内存中的ndarray对象元数据(metadata)实际数据2.ndarray数组对象的特点3.ndarray数组对象的创建1)np.array(任何可被解释为Numpy数组的逻辑结构)2)np.arange(起始值(0),终止值,步长(1))3)np
- 尚玩助手开通升级团长怎么做?升级团长收益更高吗?有何规则门槛
星火执行官
尚玩助手团长招募如何参与?揭秘其背后的优势与开通条件!今年的广告赚钱项目中,尚玩助手无疑是一颗璀璨的明星。其稳定的运营和丰厚的静态收益,赢得了众多用户的喜爱。若你拥有一定的人脉资源,成为尚玩助手的团长将是明智之选。团长的身份不仅能让你的收益水涨船高,更是对你能力的肯定。快来了解团长招募的具体条件和好处,开启你的日进斗金之旅吧!一、尚玩助手APP下载:我们先扫码下载尚玩助手,这边开通团长后续会有政策
- 空间曲线正交投影及其距离计算的理论与实践
老歌老听老掉牙
python正交投影
引言:正交投影的几何本质在三维空间中,正交投影是一种基础而重要的几何变换,它将空间中的点沿特定方向映射到一个平面上。当我们考虑将空间曲线投影到由给定法向量n\mathbf{n}n定义的平面时,这一问题在计算机图形学、CAD/CAM系统和科学计算中具有广泛应用。本文将从数学原理、Python实现到距离计算的等价性问题,全面探讨这一几何操作的深层内涵。设空间曲线由参数方程r(t)=(x(t),y(t)
- 数据结构入门指南:程序世界的基石
Mikhail_G
数据结构python开发语言
大家好!在计算机的世界里,数据结构就像我们日常生活中的收纳系统——它决定了数据如何被存储、组织和使用。无论你是刚接触编程的新手,还是希望巩固基础的开发者,理解数据结构都是提升编程能力的关键一步。一、什么是数据结构?数据结构是计算机中组织、管理和存储数据的方式,它定义了数据元素之间的关系以及对数据进行操作的方法。简单来说,数据结构就是数据的“容器”,不同的容器适合存放不同类型的数据,就像书架适合放书
- 机器学习初学者理论初解
Mikhail_G
机器学习人工智能
大家好!为什么手机相册能自动识别人脸?为什么购物网站总能推荐你喜欢的商品?这些“智能”背后,都藏着一位隐形高手——机器学习(MachineLearning)。一、什么是机器学习?简单说,机器学习是教计算机从数据中自己找规律的技术。就像教孩子认猫:不是直接告诉他“猫有尖耳朵和胡须”,而是给他看100张猫狗照片,让他自己总结出猫的特征。传统程序vs机器学习传统程序:输入规则+数据→输出结果(例:按“温
- Embedding与向量数据库
玖月初玖
大模型应用开发基础人工智能embedding数据库
1.Embedding是什么EmbeddingModel是一种机器学习模型,它的核心任务是将离散的、高维的符号(如单词、句子、图片、用户、商品等)转换成连续的、低维的向量(称为“嵌入”或“向量表示”),并且这个向量能有效地捕捉原始符号的语义、关系或特征。1.1通俗理解EmbeddingModel是让计算机“理解”世界的核心工具,把“文字、图片、音频”等信息变成一串有意义的数字我们称之为“向量”。类
- CCF-GESP 等级考试 2025年6月认证Python四级真题解析
1单选题(每题2分,共30分)第1题2025年4月19日在北京举行了一场颇为瞩目的人形机器人半程马拉松赛。比赛期间,跑动着的机器人会利用身上安装的多个传感器所反馈的数据来调整姿态、保持平衡等,那么这类传感器类似于计算机的()。A.处理器B.存储器C.输入设备D.输出设备解析:答案:C。所有传感器都用于采集数据,属于输入设备,故选C。第2题小杨购置的计算机使用一年后觉得内存不够用了,想购置一个容量更
- 【数据结构】详解堆排序当中的topk问题(leetcode例题)
ylfxw
数据结构leetcode算法
文章目录前言如何理解topk问题代码逻辑代码实现前言Leetcode相关题目:215.数组中的第K个最大元素如何理解topk问题**TopK问题是一个经典的问题,在计算机科学中,它的目标是在一组数据中找到前K个最大或最小的元素。**这个问题在许多场景下都很重要,比如搜索引擎的搜索结果排名、数据分析中的热门元素筛选等。.在最简单的形式中,给定一个数组(或列表)和一个整数K,TopK问题要求返回数组中
- LVS调度算法
等风来也chen
随笔lvslvs调度算法
LVS的十种调度算法一)静态调度:①RR(RoundRobin):轮询调度轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。【提示:这里是不考虑每台服务器的处理能力】②WRR:weight,加权轮询(以权重之间的比例实现在各主机之间进行调度)由于每台服
- LVS的10种调度算法
蜡笔晓心
其他
1.1静态算法:1.1.1rr(roundrobin):轮询调度算法:轮询调度算法的原理就是依次将用户的访问请求,平均的分配到每一台web服务节点上,从1开始,到最后一台服务器节点结束,然后在开始新一轮的循环,这种算法简单,但是没有考虑到每台节点服务器的具体性能1.1.2wrr(weight):权重调度算法由于每台服务器的性能会高低不同,wrr将会根据管理员设定的权重值来分配访问请求,权重值越大的
- 计算机网络中:传输层和网络层之间是如何配合的
woainizhongguo.
计算机网络计算机网络网络
可以把网络层和传输层想成一个“快递系统”:网络层(IP层)=邮政系统:只负责把“包裹”(IP数据报)从A地搬到B地,不保证顺序、不保证不丢、不保证不重复。传输层(TCP/UDP层)=快递公司:在邮政系统之上提供“增值服务”——对TCP来说,就是可靠、按序、不重复、流量受控的端到端运输;对UDP来说,就是“无连接、尽力而为”的快送。下面用一次典型的TCP通信说明两者如何“接力配合”。1.建立连接(三
- 【Tomcat】Tomcat线程池深度调优手册(终极版)
夜雨hiyeyu.com
javatomcatjavajvmspringspringbootnginxapache
Tomcat线程池深度调优手册(终极版)一、Tomcat线程池架构全解析二、精准参数计算公式(带场景适配)三、线程池溢出故障树分析四、生产环境全链路调优五、极限性能压测方案六、特殊场景应对策略七、调优禁忌清单八、调优效果验证一、Tomcat线程池架构全解析三层处理模型accept队列任务分发响应TCP层NIO线程业务线程池网络层TCP层:内核维护的SYN队列(受net.core.somaxconn
- Spring Boot+Redis+Caffeine 二级缓存架构的终极实现方案、包含万级QPS下的黄金配置参数、全文超过2500字(博君一赞)
夜雨hiyeyu.com
javaspringbootredis架构后端javaspringcloudspring
SpringBoot+Redis+Caffeine二级缓存架构的终极实现方案、包含万级QPS下的黄金配置参数、全文超过2500字(博君一赞)一、架构设计原理(10万QPS基石)设计优势:二、Caffeine本地缓存原子级配置1.高性能缓存构造器2.容量智能计算算法3.动态TTL策略三、Redis集群极致优化(支撑百万OPS)1.Lettuce连接池配置2.Redis服务端关键配置3.Pipelin
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那