spark Streaming +kafka 的offset数据保存MySQL、hbase、redis,zookeeper

Kafka做为一款流行的分布式发布订阅消息系统,以高吞吐、低延时、高可靠的特点著称,已经成为Spark Streaming常用的流数据来源。

其实说白了,官方提供的思路就是,把JavaInputDStream转换为OffsetRange对象,该对象具有topic对应的分区的所有信息,每次batch处理完,Spark Streaming都会自动更新该对象,所以你只需要找个合适的地方保存该对象(比如HBase、HDFS),就可以愉快的操纵offset了。

一、SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量

在数据库中新建一张表Offset,表结构设计如图
在这里插入图片描述

å¨è¿éæå¥å¾çæè¿°

//配置数据库信息
//使用IDEA,在resources文件夹下新建文件File文件名为application.conf
db.default.driver="com.mysql.jdbc.Driver"
db.default.url="jdbc:mysql://hadoop01:3306/kafkaOffset?characterEncodeing=utf-8"
db.default.user="root"
db.default.password="root"
/*
将偏移量保存到MySQL中
 */
object SparkStreamingOffsetMySql {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("medd").setMaster("local[2]")
    val ssc = new StreamingContext(conf,Duration(5000))
    //配置一系列基本配置
    val groupid = "GPMMCC"
    val topic = "mysqlDemo"
    val brokerList = "hadoop01:9092,hadoop02:9092,hadoop03:9092"
   // val zkQuorum = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
    val topics = Set(topic)
    //设置kafka的参数
    val kafkaParams = Map(
      "metadata.broker.list"->brokerList,
      "group.id"->groupid,
      "auto.offset.reset"->kafka.api.OffsetRequest.SmallestTimeString
    )
    //加载配置 application.conf  https://www.jianshu.com/p/2369a020e604
    DBs.setup()     // connect to mysql 
    //不需要查询zk中的offset啦,直接查询MySQL中的offset
    val fromdbOffset:Map[TopicAndPartition,Long]=
      DB.readOnly{
        implicit  session=>{
          //查询每个分组下面的所有消息
          SQL(s"select * from offset where groupId = '${groupid}'" +
           //将MySQL中的数据赋值给元组
            s"").map(m=>(TopicAndPartition(m.string("topic"),m.string("partitions").toInt),m.string("untilOffset").toLong))
            .toList().apply()
        }.toMap  //最后toMap ,应为前面的返回值已经给定
      }

    //创建一个DStream,用来获取数据
    var kafkaDStream : InputDStream[(String,String)] = null

    //从MySql中获取数据进行判断
    if(fromdbOffset.isEmpty){
      kafkaDStream = KafkaUtils.createDirectStream[String,String,StringDecoder,
        StringDecoder](ssc,kafkaParams,topics)
    }else{
      //1\ 不能重复消费
      //2\ 保证偏移量
      var checkOffset = Map[TopicAndPartition,Long]()

      //加载kafka的配置
      val kafkaCluster = new KafkaCluster(kafkaParams)
      //首先获得kafka中的所有的topic和partition Offset
      val earliesOffset: Either[Err, Map[TopicAndPartition, KafkaCluster.LeaderOffset]
        ] = kafkaCluster.getEarliestLeaderOffsets(fromdbOffset.keySet)

      //然后开始比较大小,用mysql中的offset和kafka中的offset进行比较
      if(earliesOffset.isRight){
        //去到需要的 大Map
        //物取值
        val tap: Map[TopicAndPartition, KafkaCluster.LeaderOffset] =
        earliesOffset.right.get
        //比较,直接进行比较大小
        val checkOffset = fromdbOffset.map(f => {
          //取kafka中的offset
          //进行比较,不需要重复消费,取最大的
          val KafkatopicOffset = tap.get(f._1).get.offset
          if (f._2 > KafkatopicOffset) {
            f
          } else {
            (f._1, KafkatopicOffset)
          }
        })
        checkOffset
      }
      val messageHandler=(mmd:MessageAndMetadata[String,String])=>{
        (mmd.key(),mmd.message())
      }
      //不是第一次启动的话 ,按照之前的偏移量取数据的偏移量
      kafkaDStream = KafkaUtils.createDirectStream[String,String,StringDecoder
        ,StringDecoder,(String,String)](ssc,kafkaParams,checkOffset
      ,messageHandler)
    }
    var offsetRanges = Array[OffsetRange]()
    kafkaDStream.foreachRDD(kafkaRDD=>{
     offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges
      val map: RDD[String] = kafkaRDD.map(_._2)
      map.foreach(println)

      //更新偏移量
        DB.localTx(implicit session =>{
          //去到所有的topic partition offset
          for (o<- offsetRanges){
            /*SQL("update offset set groupId=? topic=?,partition=?," +
              "untilsOffset=?").bind(groupid,o.topic,o.partition,o.untilOffset).update().apply()*/
            SQL("replace into offset(groupId,topic,partitions,untilOffset) values(?,?,?,?)").bind(
              groupid,o.topic,o.partition.toString,o.untilOffset.toString
            ).update().apply()
          }
        })
    })
    ssc.start()
    ssc.awaitTermination()
  }
}
 
原文:https://blog.csdn.net/Lu_Xiao_Yue/article/details/84110045 
 
/*kafka偏移量保存在数据库,spark从kafka拉去数据时候,先读取数据库偏移量*/
object StreamingKafkaMysqlOffset {
  //设置日志级别
  Logger.getLogger("org").setLevel(Level.WARN)

  def main(args: Array[String]): Unit = {
    //conf 本地运行设置
    val conf: SparkConf = new SparkConf()
      .setMaster("local[*]")
      .setAppName(this.getClass.getSimpleName)
      //每秒钟每个分区kafka拉取消息的速率
      .set("spark.streaming.kafka.maxRatePerPartition", "100")
      // 序列化
      .set("spark.serilizer", "org.apache.spark.serializer.KryoSerializer")
      // 建议开启rdd的压缩
      .set("spark.rdd.compress", "true")

    //SparkStreaming
    val ssc: StreamingContext = new StreamingContext(conf, Seconds(1))

    // kafka的参数配置
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "hadoop:9092,hadoop-01:9092,hadoop-02:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> groupId,
      "auto.offset.reset" -> "earliest",
      "enable.auto.commit" -> (false: java.lang.Boolean) //自己维护偏移量
    )
    val groupId = "topic_group0"
    val topic = "order"
    val topics = Array(topic)
    // 需要设置偏移量的值
    val offsets: mutable.HashMap[TopicPartition, Long] = mutable.HashMap[TopicPartition, Long]()
    val conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=utf-8", "root", "123456")

    val pstm = conn.prepareStatement("select * from mysqloffset where groupId = ? and topic = ? ")
    pstm.setString(1, groupId)
    pstm.setString(2, topic)

    val result: ResultSet = pstm.executeQuery()
    while (result.next()) {
      // 把数据库中的偏移量数据加载了
      val p = result.getInt("partition")
      val f = result.getInt("untilOffset")
      //      offsets += (new TopicPartition(topic,p)-> f)
      val partition: TopicPartition = new TopicPartition(topic, p)
      offsets.put(partition, f)
    }

    val stream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent,
      Subscribe[String, String](topics, kafkaParams, offsets)
    )

    //转换成RDD
    stream.foreachRDD(rdd => {
      //手动指定分区的地方
      val ranges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      println("长度=" + ranges.length)
      ranges.foreach(println)
      //: RDD[(String, Int)]
      val result = rdd.map(_.value()).flatMap(_.split(",")).map((_, 1)).reduceByKey(_ + _)
      result.foreach(println)

      //      result.foreachPartition(p => {
      //        val jedis: Jedis = ToolsRedisMysql.getJedis()
      //        //        val jedis = RedisUtils.getJedis
      //        p.foreach(zookeeper => {
      //          jedis.hincrBy("wc1", zookeeper._1, zookeeper._2)
      //        })
      //        jedis.close()
      //      })

      // 把偏移量的Array  写入到mysql中
      ranges.foreach(zookeeper => {
        // 思考,需要保存哪些数据呢?   起始的offset不需要  还需要加上 groupid

        val pstm = conn.prepareStatement("replace into mysqloffset values (?,?,?,?)")
        pstm.setString(1, zookeeper.topic)
        pstm.setInt(2, zookeeper.partition)
        pstm.setLong(3, zookeeper.untilOffset)
        pstm.setString(4, groupId)
        pstm.execute()
        pstm.close()
      })
    })
    ssc.start()
    ssc.awaitTermination()

  }
}

二、offset 保存到hbase

 
import scala.collection.mutable

/**  单个跟组情况
  * 手工操作offset
  *        1 从hbase获取offset,从kafka拉取数据
没有分组消费,所以没有分组信息
    htable: hbase_consumer_offset
    Family: topic_partition_offset
    column: topic 
            partition
            offset
   rowkey:topic_partition
  *        2 数据处理完后,把until offset 保存到hbase
  *        3 kafka 长时间挂掉之后,从kafka最早的offset 开始读取 此处还需要处理   
  */
object OffsetOperate {
  var hbaseProp = PropertiesUtil.getProperties("hbase")
  var kafkaconsumePro = PropertiesUtil.getProperties("kafkaconsume")
  def main(args: Array[String]): Unit = {

  val conf = new SparkConf().setAppName("sparkStreaming - offset operate")
    .setMaster("local[2]") // --master local[2] | spark://xx:7077 | yarn
    .set("spark.testing.memory", "2147480000")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc,Seconds(5))

    //kafka配置
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> kafkaconsumePro.getProperty("bootstrap.servers"),
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> kafkaconsumePro.getProperty("group"),
      "auto.offset.reset" -> "earliest", // 第一次读取时从topic 首位置开始读取
      "enable.auto.commit" -> (false: java.lang.Boolean)// kafka 不保存消费的offset
    )

    //监听频道
    val topics = Array(kafkaconsumePro.getProperty("topics"))
    // 获取hbase连接
    val hbaseConf = HBaseConfiguration.create()
    hbaseConf.set("hbase.zookeeper.quorum",hbaseProp.getProperty("quorum")) //zookeeper 集群
    hbaseConf.set("hbase.zookeeper.property.client","2181")
    hbaseConf.set("hbase.master", hbaseProp.getProperty("hbase_master"))
    hbaseConf.set("hbase.defaults.for.version.skip", "true")
    //获取连接对象
    val conn = ConnectionFactory.createConnection(hbaseConf)
    val admin = conn.getAdmin
    val tn = TableName.valueOf("hbase_consumer_offset") //hbase 表名
    val isExist = admin.tableExists(tn)
    val streams : InputDStream[ConsumerRecord[String,String]]= {
    if(isExist) {
      val table = new HTable(hbaseConf, "hbase_consumer_offset")
      val filter = new RowFilter(CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes(topics + "_")))
      println("============ 过滤器已经创建 ==========")
      val s = new Scan()
      s.setFilter(filter)
      val rs = table.getScanner(s)

      // 设置 offset
      val fromOffsets = scala.collection.mutable.Map[TopicPartition, Long]()
      var s1 = ""
      var s2 = 0
      var s3: Long = 0
        for (r: Result <- rs.next(200)) {
          println("rowKey : " + new String(r.getRow))
          for (keyvalue: KeyValue <- r.raw()) {
            if ("topic".equals(new String(keyvalue.getQualifier))) {
              s1 = new String(keyvalue.getValue)
              println("columnFamily :" + new String(keyvalue.getFamily) + " column :" +new String( keyvalue.getQualifier) + s1)
            } else if ("partition".equals(new String(keyvalue.getQualifier))){
              s2 = Bytes.toInt(keyvalue.getValue)
              println("columnFamily :" +  new String(keyvalue.getFamily) + " column :" + new String( keyvalue.getQualifier) + s2)
            } else if("offset".equals(new String(keyvalue.getQualifier))) { //if("offset".equals(new String(keyvalue.getQualifier)))
              s3 = Bytes.toLong(keyvalue.getValue)
              println("columnFamily :" + new String(keyvalue.getFamily) + " column :" + new String( keyvalue.getQualifier) + s3)
            }
          }
          fromOffsets.put(new TopicPartition(s1, s2), s3)
        }
      println("fromOffset is : "+fromOffsets)
        KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent,
          ConsumerStrategies.Assign(fromOffsets.keySet, kafkaParams, fromOffsets)) //(fromOffsets.keySet,kafkaParams,fromOffsets))
      }else{ //Hbase 里面不存在offset表,从topic首位置开始消费
        val htable = new HTableDescriptor(TableName.valueOf("hbase_consumer_offset"))
        htable.addFamily(new HColumnDescriptor(("topic_partition_offset")))
        admin.createTable(htable)
        println("表已经创建成功========" + htable)
      KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe(topics, kafkaParams))
      }
    }
  // val dstream = streams.map(x=>URLDecoder.decode(x.value()))

    // 操作成功后更新offset
    streams.foreachRDD{ rdd =>
      //if(!rdd.isEmpty()){
      // 打成一个事务,把业务计算和offset保存放在一起,要么成功,要么一起失败,实现精确一次的消费
      import scala.collection.JavaConversions._
      val table = new HTable(hbaseConf,"hbase_consumer_offset")
      table.setAutoFlush(false, false)
      var putList:List[Put] = List()
        val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges  // RDD[ConsumerRecord[String,String]] 强转成offsetRanges
        for(offsetRange <- offsetRanges){
          println("the topic is "+offsetRange.topic)
          println("the partition is "+offsetRange.partition)
          println("the fromOffset is "+offsetRange.fromOffset)
          println("the untilOffset is "+offsetRange.untilOffset)
          println("the object is "+offsetRange)
         // val table = new HTable(hbaseConf,"hbase_consumer_offset")
         // table.setAutoFlush(false, false)
          val put  = new Put(Bytes.toBytes(offsetRange.topic+"_"+offsetRange.partition))//put时候指定列族
          put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("topic"),Bytes.toBytes(offsetRange.topic))
          put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("partition"),Bytes.toBytes(offsetRange.partition))
          put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("offset"),Bytes.toBytes(offsetRange.untilOffset))
          putList = put+:putList
         // println("add data success !")
        }

        println("the RDD records are "+rdd.map{x =>URLDecoder.decode(x.value())}.collect.foreach(println)) // 程序的计算逻辑
      //  }
      table.put(putList)
      table.flushCommits()
      println("add and compute data success !")
      }
    ssc.start()
    ssc.awaitTermination()
  }
}

参考链接 :https://www.jianshu.com/p/667e0f58b7b9
 
实现的Spark Streaming代码如下(ConsumerRecord类不能序列化,使用时要注意,不要分发该类到其他工作节点上,避免错误打印)

三、存储在redis(基于内存)读写更快,

2、多个服务器分区,多个组消费组,设计key: 主题_分组_分区;   value :offset

gtKey=groupid/topic作为唯一标识   

conn.hset(gtKey, partition.toString, offset.toString)

http://www.pianshen.com/article/8095259521/

 object KafkaDricteRedis {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("redis").setMaster("local[*]")
    val ssc = new StreamingContext(conf, new Duration(5000))

    val groupid = "GB01" //组名
    val topic = "wordcount3"
    //topic 名
    //在redis中以 groupid/topic作为唯一标识 ,存储分区偏移量
    //在Reids 使用的时hash类型来存储
    val gtKey = groupid + "/" + topic
    //topic
    val topics = Set(topic)
    //zk地址
    val zkQuorum = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
    //brokerList
    val brokerList = "hadoop01:9092,hadoop03:9092"

    val kafkaParams = Map(
      // metadata.broker.list
      "metadata.broker.list" -> brokerList,
      "group.id" -> groupid,
      "auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString
      //从头开始消费
    )
    //记录topic 、分区对应的偏移量偏移量,在创建InputDStream时作为参数传如
    //从这个偏移量开始读取
    var fromOffset: Map[TopicAndPartition, Long] = Map[TopicAndPartition, Long]()
    var offsets =   Map[TopicPartition, Long]()

    var kafkaDStream: InputDStream[(String, String)] = null
    //	获取一个jedis连接
    val conn = getConnection()
    // conn.flushDB()
    //jd.hget(groupid+topic,"")
    //获取全部的keys
    val values: util.Set[String] = conn.keys("*")
    //println(values)
    // [GB01/wordcount3]   分区数   偏移量
    //如果keys中包含 GB01/wordcount3这样的key,则表示以前读取过
    if (values.contains(gtKey)) {
      //获取key 为GB01/wordcount3 下面所对应的(k,v)
      var allKey: util.Map[String, String] = conn.hgetAll(gtKey)
      //导入后,可以把Java中的集合转换为Scala中的集合
      import scala.collection.JavaConversions._
      var list: List[(String, String)] = allKey.toList
      //循环得到的(k,v)
      //这里面的 k 对应的是分区, v对应的是偏移量
      for (key <- list) { //这里的key是一个tuple类型
        //new一个TopicAndPartition 把 topic 和分区数传入
        val tp = new TopicAndPartition(topic, key._1.toInt)
        //把每个topic 分区 对应的偏移量传入
        fromOffset += tp -> key._2.toLong

        // 把数据库中的偏移量数据加载了
        val p = key._1.toInt
        val f =  key._2.toLong
//        offsets += (new TopicPartition(topic,p)-> f)
        val partition: TopicPartition = new TopicPartition(topic, p)
        offsets.put(partition, f)


      }
      //这里的是把数据(key ,value)是kafka 的key默认是null,
      //value 是kafka中的value
      val messageHandler = (mmd: MessageAndMetadata[String, String]) => {
        (mmd.key(), mmd.message())
      }

      val stream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
        ssc,
        LocationStrategies.PreferConsistent,
        Subscribe[String, String](topics, kafkaParams, offsets)
      )
    } else {
      //如果以前没有读取过,创建一个新的InputDStream
      val stream = KafkaUtils.createDirectStream[String, String](
        ssc,
        PreferConsistent,
        Subscribe[String, String](topics, kafkaParams))
    }
    //用来更新偏移量,OffsetRange中可以获取分区及偏移量
    var OffsetRangs = Array[OffsetRange]()
    //
    kafkaDStream.foreachRDD(kafkaRDD => {
      //这里面的RDD是kafkaRDD ,可以转换为HasOffsetRange
      val ranges: HasOffsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges]
      OffsetRangs = ranges.offsetRanges
      //获取value,(key 默认是null,没有用)
      val map: RDD[String] = kafkaRDD.map(_._2)
      map.foreach(x => println(x + "==========================="))
      //更新偏移量
      for (o <- OffsetRangs) {
        //取出偏移量
        val offset = o.untilOffset
        //取出分区
        val partition = o.partition
        println("partition: " + partition)
        println("offset: " + offset)
        //把通过hset,把对应的partition和offset写入到redis中
        conn.hset(gtKey, partition.toString, offset.toString)
      }

    })

    ssc.start()
    ssc.awaitTermination()

  }

  //Jedis连接池
  def getConnection(): Jedis = {
    //new 一个JedisPoolConfig,用来设定参数
    val conf = new JedisPoolConfig()
    val pool = new JedisPool(conf, "hadoop01", 6379)
    //最大连接数
    conf.setMaxTotal(20)
    //最大空闲数
    conf.setMaxIdle(20)

    val jedis = pool.getResource()
    //密码
    jedis.auth("123")
    jedis
  } 
}

四、kafka保存偏移量到zookeeper

object othersUtil {
 // todo kafka保存偏移量到zookeeper
 def kafkaAndZookeeper(ssc: StreamingContext): DStream[String] = {

val group = "DirectAndZk"
val topic = "apkmsg"
val brokerList = "hadoop1:9092"
val zkQuorum = "hadoop1:2181,hadoop2:2181,hadoop3:2181"
val topics: Set[String] = Set(topic)
val topicDirs = new ZKGroupTopicDirs(group, topic)
val zkTopicPath = s"${topicDirs.consumerOffsetDir}"

val kafkaParams = Map(
  "metadata.broker.list" -> brokerList,
  "group.id" -> group,
  "auto.offset.reset" -> kafka.api.OffsetRequest.LargestTimeString
)

val zkClient = new ZkClient(zkQuorum)
val children = zkClient.countChildren(zkTopicPath)
var kafkaStream: InputDStream[(String, String)] = null
var fromOffsets: Map[TopicAndPartition, Long] = Map()

if (children > 0) {
  for (i <- 0 until children) {
    val partitionOffset = zkClient.readData[String](s"$zkTopicPath/${i}")
    val tp = TopicAndPartition(topic, i)
    fromOffsets += (tp -> partitionOffset.toLong)
  }
  val messageHandler = (mmd: MessageAndMetadata[String, String]) => (mmd.key(), mmd.message())
  kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, messageHandler)
} else {
  kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
}

var offsetRanges = Array[OffsetRange]()
kafkaStream.foreachRDD { kafkaRDD =>
  offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges
  for (o <- offsetRanges) {
    val zkPath = s"${topicDirs.consumerOffsetDir}/${o.partition}"
    ZkUtils.updatePersistentPath(zkClient, zkPath, o.untilOffset.toString)
  }
}

val streamrdd = kafkaStream.map(_._2)
streamrdd
  }
}
 
object kafkazookeeper {
 def main(args: Array[String]): Unit = {
Logger.getLogger("org").setLevel(Level.WARN)
val conf = new SparkConf().setAppName("KafkaDirectWordCount")
  .setMaster("local[6]")
val ssc = new StreamingContext(conf, Seconds(5))

othersUtil.kafkaAndZookeeper(ssc)
  .flatMap(_.split(" ")).map(x => (x, 1)).reduceByKey(_ + _)
  .foreachRDD(x => {
    println("****************************************")
    println(x.collect().mkString("\n"))
    println("****************************************")
  })

ssc.start()
ssc.awaitTermination()
  }
}

手动输入kafka源数据
369 963 666
5 5 5
6 6 6
0 0 0
5 5 5
6 6 6
0 0 0
zw zw zw zw
zw zw zw zw
55 55 55

结果

(0,6)
(5,6)
(6,6)
(zw,8)
(55,3)
(963,1)
(666,1)
(369,1)
 

你可能感兴趣的:(kafka,spark,Streaming)