multi-class classification problem: 多分类问题是相对于二分类问题(典型的0-1分类)来说的,意思是类别总数超过两个的分类问题,比如手写数字识别mnist的label总数有10个,每一个样本的标签在这10个中取一个。
multi-label classification problem:多标签分类(或者叫多标记分类),是指一个样本的标签数量不止一个,即一个样本对应多个标签。
一般情况下,假设我们的分类问题有5个标签,样本数量为n,数学表示为:
from keras.layers import Input,Dense
from keras.models import Sequential
model = Sequential()
model.add(Dense(10, activation="relu", input_shape=(10,)))
model.add(Dense(5))
对于多分类问题,接下来要做的是输出层的设计。在多分类中,最常用的就是softmax层。
softmax层中的softmax 函数是logistic函数在多分类问题上的推广,它将一个N维的实数向量压缩成一个满足特定条件的N维实数向。压缩后的向量满足两个条件:
因此,softmax适用于多分类问题中对每一个类别的概率判断,softmax计算公式:
import numpy as np
def Softmax_sim(x):
y = np.exp(x)
return y/np.sum(y)
x = np.array([1.0,2.0,3.0,4.0,1.0])
print(Softmax_sim(x))
#输出:[ 0.03106277 0.08443737 0.22952458 0.6239125 0.03106277]
假设隐藏层的输出为[1.0,2.0,3.0,4.0,1.0],我们可以根据softmax函数判断属于标签4
所以,利用keras的函数式定义多分类的模型:
from keras.layers import Input,Dense
from keras.models import Model
inputs = Input(shape=(10,))
hidden = Dense(units=10,activation='relu')(inputs)
output = Dense(units=5,activation='softmax')(hidden)
在预测多标签分类问题时,假设隐藏层的输出是[-1.0, 5.0, -0.5, 5.0, -0.5 ],如果用softmax函数的话,那么输出为:
z = np.array([-1.0, 5.0, -0.5, 5.0, -0.5 ])
print(Softmax_sim(z))
# 输出为[ 0.00123281 0.49735104 0.00203256 0.49735104 0.00203256]
通过使用softmax,我们可以清楚地选择标签2和标签4。但我们必须知道每个样本需要多少个标签,或者为概率选择一个阈值。这显然不是我们想要的,因为样本属于每个标签的概率应该是独立的。
对于一个二分类问题,常用的激活函数是sigmoid函数:
import numpy as np
def Sigmoid_sim(x):
return 1 /(1+np.exp(-x))
a = np.array([-1.0, 5.0, -0.5, 5.0, -0.5])
print(Sigmoid_sim(a))
#输出为: [ 0.26894142 0.99330715 0.37754067 0.99330715 0.37754067]
此时,每个标签的概率即是独立的。完整整个模型构建之后,最后一步中最重要的是为模型的编译选择损失函数。在多标签分类中,大多使用binary_crossentropy损失而不是通常在多类分类中使用的categorical_crossentropy损失函数。这可能看起来不合理,但因为每个输出节点都是独立的,选择二元损失,并将网络输出建模为每个标签独立的bernoulli分布。整个多标签分类的模型为:
from keras.models import Model
from keras.layers import Input,Dense
inputs = Input(shape=(10,))
hidden = Dense(units=10,activation='relu')(inputs)
output = Dense(units=5,activation='sigmoid')(hidden)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
Guide To Multi-Class Multi-Label Classification With Neural Networks In Python
keras实践(一): multi-label神经网络
Softmax回归