微信公众号:小白图像与视觉
关于技术、关注
yysilence00
。有问题或建议,请公众号留言。
Anaconda:https://www.anaconda.com/download/
Python_whl:https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv
pycharm:按照自己的喜好,选择一个能debug就好
import cv2 #opencv读取的格式是BGR
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
img=cv2.imread('cat.jpg')
img
array([[[142, 151, 160],
[146, 155, 164],
[151, 160, 169],
...,
[156, 172, 185],
[155, 171, 184],
[154, 170, 183]],
[[107, 118, 126],
[112, 123, 131],
[117, 128, 136],
...,
[155, 171, 184],
[154, 170, 183],
[153, 169, 182]],
[[108, 119, 127],
[112, 123, 131],
[118, 129, 137],
...,
[154, 170, 183],
[153, 169, 182],
[152, 168, 181]],
...,
[[162, 186, 198],
[157, 181, 193],
[142, 166, 178],
...,
[181, 204, 206],
[170, 193, 195],
[149, 172, 174]],
[[140, 164, 176],
[147, 171, 183],
[139, 163, 175],
...,
[167, 187, 188],
[123, 143, 144],
[104, 124, 125]],
[[154, 178, 190],
[154, 178, 190],
[121, 145, 157],
...,
[185, 198, 200],
[130, 143, 145],
[129, 142, 144]]], dtype=uint8)
#图像的显示,也可以创建多个窗口
cv2.imshow('image',img)
# 等待时间,毫秒级,0表示任意键终止
cv2.waitKey(0)
cv2.destroyAllWindows()
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey(0)
cv2.destroyAllWindows()
img.shape
(414, 500, 3)
img=cv2.imread('cat.jpg',cv2.IMREAD_GRAYSCALE)
img
array([[153, 157, 162, ..., 174, 173, 172],
[119, 124, 129, ..., 173, 172, 171],
[120, 124, 130, ..., 172, 171, 170],
...,
[187, 182, 167, ..., 202, 191, 170],
[165, 172, 164, ..., 185, 141, 122],
[179, 179, 146, ..., 197, 142, 141]], dtype=uint8)
img.shape
(414, 500)
#图像的显示,也可以创建多个窗口
cv2.imshow('image',img)
# 等待时间,毫秒级,0表示任意键终止
cv2.waitKey(10000)
cv2.destroyAllWindows()
#保存
cv2.imwrite('mycat.png',img)
True
type(img)
numpy.ndarray
img.size
207000
img.dtype
dtype('uint8')
vc = cv2.VideoCapture('test.mp4')
# 检查是否打开正确
if vc.isOpened():
oepn, frame = vc.read()
else:
open = False
while open:
ret, frame = vc.read()
if frame is None:
break
if ret == True:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('result', gray)
if cv2.waitKey(100) & 0xFF == 27:
break
vc.release()
cv2.destroyAllWindows()
img=cv2.imread('cat.jpg')
cat=img[0:50,0:200]
cv_show('cat',cat)
b,g,r=cv2.split(img)
r
array([[160, 164, 169, ..., 185, 184, 183],
[126, 131, 136, ..., 184, 183, 182],
[127, 131, 137, ..., 183, 182, 181],
...,
[198, 193, 178, ..., 206, 195, 174],
[176, 183, 175, ..., 188, 144, 125],
[190, 190, 157, ..., 200, 145, 144]], dtype=uint8)
r.shape
(414, 500)
img=cv2.merge((b,g,r))
img.shape
(414, 500, 3)
# 只保留R
cur_img = img.copy()
cur_img[:,:,0] = 0
cur_img[:,:,1] = 0
cv_show('R',cur_img)
# 只保留G
cur_img = img.copy()
cur_img[:,:,0] = 0
cur_img[:,:,2] = 0
cv_show('G',cur_img)
# 只保留B
cur_img = img.copy()
cur_img[:,:,1] = 0
cur_img[:,:,2] = 0
cv_show('B',cur_img)
top_size,bottom_size,left_size,right_size = (50,50,50,50)
replicate = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_CONSTANT, value=0)
import matplotlib.pyplot as plt
plt.subplot(231), plt.imshow(img, 'gray'), plt.title('ORIGINAL')
plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REPLICATE')
plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('REFLECT')
plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('REFLECT_101')
plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP')
plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT')
plt.show()
output_34_0.png
img_cat=cv2.imread('cat.jpg')
img_dog=cv2.imread('dog.jpg')
img_cat2= img_cat +10
img_cat[:5,:,0]
array([[142, 146, 151, ..., 156, 155, 154],
[107, 112, 117, ..., 155, 154, 153],
[108, 112, 118, ..., 154, 153, 152],
[139, 143, 148, ..., 156, 155, 154],
[153, 158, 163, ..., 160, 159, 158]], dtype=uint8)
img_cat2[:5,:,0]
array([[152, 156, 161, ..., 166, 165, 164],
[117, 122, 127, ..., 165, 164, 163],
[118, 122, 128, ..., 164, 163, 162],
[149, 153, 158, ..., 166, 165, 164],
[163, 168, 173, ..., 170, 169, 168]], dtype=uint8)
#相当于% 256
(img_cat + img_cat2)[:5,:,0]
array([[ 38, 46, 56, ..., 66, 64, 62],
[224, 234, 244, ..., 64, 62, 60],
[226, 234, 246, ..., 62, 60, 58],
[ 32, 40, 50, ..., 66, 64, 62],
[ 60, 70, 80, ..., 74, 72, 70]], dtype=uint8)
cv2.add(img_cat,img_cat2)[:5,:,0]
array([[255, 255, 255, ..., 255, 255, 255],
[224, 234, 244, ..., 255, 255, 255],
[226, 234, 246, ..., 255, 255, 255],
[255, 255, 255, ..., 255, 255, 255],
[255, 255, 255, ..., 255, 255, 255]], dtype=uint8)
img_cat + img_dog
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
input-33-e8802e660946> in <module>
----> 1 img_cat + img_dog
ValueError: operands could not be broadcast together with shapes (414,500,3) (429,499,3)
img_cat.shape
(414, 500, 3)
img_dog = cv2.resize(img_dog, (500, 414))
img_dog.shape
(414, 500, 3)
融合算法 y = a * X_1+ b* X_2 + B
res = cv2.addWeighted(img_cat, 0.4, img_dog, 0.6, 0)
plt.imshow(res)
<matplotlib.image.AxesImage at 0xfbd95c8>
output_48_1.png
res = cv2.resize(img, (0, 0), fx=4, fy=4)
plt.imshow(res)
<matplotlib.image.AxesImage at 0x5381288>
output_49_1.png
res = cv2.resize(img, (0, 0), fx=1, fy=3)
plt.imshow(res)
<matplotlib.image.AxesImage at 0x53e0b48>
output_50_1.png
更多请扫码关注: