1)灰度图像
2)彩色图像
OpenCV中的颜色顺序是BGR而不是RGB。
访问图像的像素在OpenCV中就是访问Mat矩阵,常用的有三种方法。
Mat数据结构,操作灰度图像像素点:
int gray_value = (int) image.at
操作彩色图像像素点:
int color_value = (int) image.at
for (int i = 0; i < mat.rows; i++) { uchar* row = mat.ptr(i); // 行指针 for (int j = 0; j < mat.cols; j++) // 遍历每一行 { row[j] = (uchar)((j / 5) * 10); } }
Mat_::iterator it = M.begin ();//初始位置的迭代器 Mat_ ::iterator itend = M.end ();//终止位置的迭代器 for (; it != itend; it++) { //处理BGR三个通道 (*it)[0] = 182;//B (*it)[1] = 194;//G (*it)[2] = 154;//R }
图像亮度调节可以等效为图像的像素操作。如下面公式是一个线性的亮度调节。
g(x)=a*f(x) + b
其中:
g(x):处理后的图像
f(x):输入图像
a:增益(放大倍数),用来控制图像的对比度
b:偏置,用控制图像的亮度
Mat M = imread("D:/WORK/5.OpenCV/LeanOpenCV/pic_src/pic4.bmp", IMREAD_GRAYSCALE); Mat M2 = Mat(M.rows, M.cols, CV_8UC1); cout << M.channels() << endl; cout << M.rows<<","<endl; float a = 0.5; float b = 10; for (int i = 0; i < M.rows; i++) for (int j = 0; j < M.cols; j++) { float pix = (float)M.at (i, j); pix = a * (float)pix + b; if ((int)pix > 255) pix = 255; M2.at (i, j) = (uchar) pix; } imshow("pic1", M); imshow("pic2", M2); waitKey(0);
图像的ROI(region of interest)是指图像中感兴趣区域、在OpenCV中图像设置图像ROI区域,实现对ROI区域操作。
方法1:
img(Rect(100, 100, 100, 100));
Rect代表一个矩形,Rect_ (_Tp _x, _Tp _y, _Tp _width, _Tp _height),参数分别是x,y,width,height。
方法2:
img(Range(100, 200), Range(100,200));
Range表示连续的行或列,Range (int _start, int _end);
示例:
Mat M = imread("D:/WORK/5.OpenCV/LeanOpenCV/pic_src/pic1.bmp"); cout << M.rows<<","<endl; Mat roi = M(Rect(30, 50, 150, 170)); imshow("pic1", M); imshow("roi", roi);
图像线性混合,产生类似画中画的效果。
h(x)=(1-a)*f(x) + b*g(x)
a的取值范围为0到1之间,通过对两幅图的像素加权得到最终的输出图像,两幅图像的大小和类型必须完全一致(两个矩阵相加维度必须一致)。
CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
double beta, double gamma, OutputArray dst, int dtype = -1);
例1:图片与背景图混合
Mat M = imread("D:/WORK/5.OpenCV/LeanOpenCV/pic_src/pic1.bmp"); cout << M.rows<<","<endl; Mat y(M.rows, M.cols, CV_8UC3, Scalar(0, 50, 100)); Mat dst; addWeighted(M, 0.3, y, 0.7, 0.0, dst); imshow("pic1", M); imshow("y", y); imshow("add", dst);
例2:两幅图像混合,先统一尺寸
Mat M = imread("D:/WORK/5.OpenCV/LeanOpenCV/pic_src/pic1.bmp"); Mat M2 = imread("D:/WORK/5.OpenCV/LeanOpenCV/pic_src/pic2.bmp"); M2 = M2(Rect(0, 0, M.cols, M.rows)); //x,y,width,height cout << M.rows<<","<endl; cout << M2.rows << "," << M2.cols << endl; Mat dst; addWeighted(M, 0.7, M2, 0.3, 0.0, dst); imshow("pic1", M); imshow("pic2", M2); imshow("add", dst);
1)函数原型
/** @brief Divides a multi-channel array into several single-channel arrays. @param src input multi-channel array. @param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are reallocated, if needed. */ CV_EXPORTS void split(const Mat& src, Mat* mvbegin); /** @overload @param m input multi-channel array. @param mv output vector of arrays; the arrays themselves are reallocated, if needed. */
2)图像颜色通道
Mat M = imread("D:/WORK/5.OpenCV/LeanOpenCV/pic_src/pic5.bmp"); vectorchannels; split(M, channels); imshow("pic1", M); imshow("B", channels.at(0)); imshow("G", channels.at(1)); imshow("R", channels.at(2)); /* 方法2 Mat channels[3]; split(M, channels); imshow("pic1", M); imshow("B", channels[0]); imshow("G", channels[1]); imshow("R", channels[2]);
图像合并函数merge是split的逆操作,将多个数组合并成多通道的数组。
merge(const Mat * mv, size_t count, OutputArray dst )
merge(InputArrayOfArrays mv, OutputArray dst )
//图像合并例子,方式1: Mat M = imread("D:/WORK/5.OpenCV/LeanOpenCV/pic_src/pic5.bmp"); Mat channels[3]; split(M, channels); imshow("pic1", M); imshow("B", channels[0]); imshow("G", channels[1]); imshow("R", channels[2]); Mat dst; merge(channels, 3, dst); imshow("merged", M); //方式2: Mat M = imread("D:/WORK/5.OpenCV/LeanOpenCV/pic_src/pic5.bmp"); vectorchannels; split(M, channels); imshow("pic1", M); imshow("B", channels.at(0)); imshow("G", channels.at(1)); imshow("R", channels.at(2)); Mat dst; merge(channels, dst); imshow("merged", M);
输出如下图。
1、《OpenCV3 编程入门》,电子工业出版社,毛星雨著
2、《学习OpenCV》,清华大学出版社,Gary Bradski, Adrian kaehler著
3、opencv常用api简单分析: split()、merge()
尊重原创技术文章,转载请注明。
https://www.cnblogs.com/pingwen/p/12296617.html