- 算法学习笔记:概率与期望
Plozia
数学/数论学习笔记+专项训练
概率与期望1.前言2.定义3.理解4.期望方程5.总结1.前言概率我们很熟,在数学课本里面我们就已经学到过概率的基本定义以及计算方式。期望我们不熟,他与概率密切相关,计算方式基于概率。2.定义概率的计算方式不必我多说,各位在数学课中都有了解。而期望,从某种意义上来讲其实就是一个加了权值的概率。我将使用一个例子来说明期望是什么:假设某一天小z有一场满分为100分的数学考试。他妈妈说:“儿子,如果你能
- [算法学习笔记](超全)概率与期望
L('ω')┘脏脏包└('ω')」
c++题解算法
引子先来讲个故事······话说在神奇的OI大陆上,有一只papermouse有一天,它去商场购物,正好是11.11,商店有活动它很荣幸被选上给1832抽奖在抽奖箱里,有3个篮蓝球,12个红球papermouse能抽3次蒟蒻的papermouse就疑惑了:抽到至少1个篮蓝球的概率是多少???Answer:总共有15个球只抽到1个篮蓝球的概率是0.435165(很好理解吧,在4个篮蓝球里取一个,再在
- 专题·数学概率与期望【including 条件概率,贝叶斯定理, 全概率公式,数学期望, 绿豆蛙的归宿
樱狸❀
数论数论数学期望概率
初见安~~~又开启数论的探索啦~~:)一。概率1.基本定义在概率论中,我们把一个随机事件的一个可能结果称为其样本点,其所有样本点构成的集合称之为样本空间。(注意,随机事件并不一定只有一种可能结果)在样本空间中,我们称事件所包含的子集为随机事件。概率的定义就很简单了,我们也都知道样本空间中的任意随机事件的概率不会超过1不会小于0.就比如我们抛硬币连续扔三次(不考虑侧面稳落地),有8中可能:AAA,A
- 第十六章 隐马尔科夫模型
小酒馆燃着灯
机器学习手写AI深度学习机器学习
文章目录简介概念随机变量与随机过程马尔可夫链隐含马尔可夫模型两个基本假设三个基本问题算法观测序列生成算法概率计算算法前向概率与后向概率前向算法后向算法小结概率与期望学习问题监督学习方法Baum-Welch算法预测算法近似算法(MAP)维特比算法(Viterbi)简介动态贝叶斯网络的最简单实现隐马尔可夫模型。HMM可以看成是一种推广的混合模型。序列化建模,打破了数据独立同分布的假设。有些关系需要理清
- Algorithm Review 9 数学相关
Log_x
学习笔记概率论算法
概率与期望结论1设xxx为离散随机变量,且x∈Nx\in\mathbbNx∈N,则E(x)=∑i=1∞i⋅P(x=i)=∑i=1∞P(x≥i)E(x)=\sum\limits_{i=1}^{\infty}i·P(x=i)=\sum\limits_{i=1}^{\infty}P(x\gei)E(x)=i=1∑∞i⋅P(x=i)=i=1∑∞P(x≥i)。树上随机游走给定一棵树,从树中的某点xxx出发,
- SPSS卡方检验结果解读详解
nekonekoboom
SPSS
卡方检验(Chi-SquareTest)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率与期望概率是否吻合,通过比较理论概率和实际概率的吻合程度,可检验两个分类变量的相关性。用户可利用SPSS软件方便的完成卡方检验,在SPSS软件中,默认H0成立,即观察频数和实际频数无差别,即两组变量相互不产生影响,两组变量不相关,如果检验P值
- 算法学习笔记:概率/期望 DP
Plozia
动态规划学习笔记+专项训练算法动态规划数据结构
算法学习笔记:概率/期望DP1.前言2.例题3.练习题1.前言概率/期望DP,是一种DP,用来计算概率或者是期望。其实我认为这种DP就是计算期望的,毕竟概率可以看成代价为1的期望。没有学过期望的读者可以看看这篇文章:算法学习笔记:概率与期望而概率/期望DP,最关键的就是期望方程。下面看一道例题。2.例题CF1265EBeautifulMirrors以这题为例,详细讲解期望DP的一般套路。为了方便,
- 隐马尔可夫模型 (hidden Markov model, HMM)
连理o
机器学习概率论自然语言处理机器学习
本文为《统计学习方法》的读书笔记目录隐马尔可夫模型的基本概念隐马尔可夫模型的定义观测序列的生成过程隐马尔可夫模型的3个基本问题概率计算算法直接计算法前向算法(forwardalgorithm)后向算法(backwardalgorithm)一些概率与期望值的计算学习算法监督学习方法Baum-Welch算法(无监督学习方法)预测算法近似算法维特比算法(Viterbialgorithm)隐马尔可夫模型的
- 机器学习算法(十七):隐马尔科夫模型(HMM)
意念回复
机器学习机器学习算法机器学习
目录1隐马尔科夫模型1.1模型概念1.2定义1.3隐马尔科夫模型的两个性质1.4盒子与球模型1.5三个基本问题2概率计算算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3学习算法3.1监督学习方法3.2Baum-Welch算法3.3Baum-Welch模型参数估计公式4预测算法4.1近似算法4.2维比特算法5总结马尔科夫链:机器学习算法(十六):马尔科夫链_意念回复的博
- 机器学习面试题——朴素贝叶斯
冰露可乐
机器学习深度学习朴素贝叶斯贝叶斯公式大厂笔试面试题
机器学习面试题——朴素贝叶斯提示:这些知识点也是大厂笔试经常考的题目,我记得阿里和京东就考!!!想必在互联网大厂就会用这些知识解决实际问题朴素贝叶斯介绍一下朴素贝叶斯优缺点贝叶斯公式朴素贝叶斯中的“朴素”怎么理解?什么是拉普拉斯平滑法?朴素贝叶斯中有没有超参数可以调?你知道朴素贝叶斯有哪些应用吗?朴素贝叶斯对异常值敏不敏感?频率学派与贝叶斯学派的差别概率与期望的公式先验概率与后验概率文章目录机器学
- [NOI2005] 聪聪与可可
Sito_Ask
NOI2005聪聪与可可~~机器猫の传送门~~期望DP+记搜聪聪一直在向可可方向追,所以不会回到原处,不具有后效性,考虑用概率与期望DP+记忆化搜索求解用dp[x][y]表示可可在x点,聪聪在y点时步数的期望值判断边界①当x==y时结束(此时毫无疑问的,dp[x][y]=0)②当
- 2019暑期计划 / 每日刷题记录
weixin_30951743
计划##1.复习与提高###动态规划-数位DP-树形DP###图论-Tarjan-拓扑序的应用-树链剖分-点分治-树上距离-网络流/费用流###数据结构-平衡树-主席树-ST表###数论-整数研究-组合数学-概率与期望##2.新知学习###离线算法-CDQ分治-整体二分###数据结构-线段树扩展操作-树套树-LCT###图论-基环树每日刷题记录转载于:https://www.cnblogs.com
- 一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现
Elenstone
NLP算法详解机器学习算法nlp
一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现1隐马尔科夫模型1.1HMM解决的问题1.2HMM模型的定义1.2.1HMM的两个假设1.2.2HMM模型1.3HMM模型的三个基本问题2概率计算问题及算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3模型训练问题及算法3.1监督学习——最大似然估计3.2非监督学习——EM算法3.3Baum-Welch算法4
- 真正的决策都是不确定性决策
蓝色多莉
阅读笔记第126/365天今日阅读《升维——不确定时代的决策博弈》作者:【澳】王珞第3章:真正的决策都是不确定性决策一、企业利润来源于不确定性。1、什么是不确定性?风险是能被计算概率与期望值的是基于已经发生的事件的统计,而不确定性是无法被预见的,即使能被预见,其发生的概率也不能被计算的未来事件。不确定性事件是不可预见,没有概率的,包括灾难、命运、前景等一切未来可能发生的事件,是每个个体未来都要共同
- 解题报告(十七)概率与期望(概率论)(ACM / OI)
繁凡さん
【解题报告】-超高质量题单+题解概率与期望《概率论》
繁凡出品的全新系列:解题报告系列——超高质量算法题单,配套我写的超高质量题解和代码,题目难度不一定按照题号排序,我会在每道题后面加上题目难度指数(1∼51\sim51∼5),以模板题难度111为基准。这样大家在学习算法的时候就可以执行这样的流程:%阅读我的【学习笔记】/【算法全家桶】学习算法⇒\Rightarrow⇒阅读我的相应算法的【解题报告】获得高质量题单⇒\Rightarrow⇒根据我的一句
- 概率与期望习题总结
总结概率题一般正着推期望题一般倒着推图上的问题如果是\(DAG\)可以直接转移否则可能要用到高斯消元\(20\)的数据范围大概率是装压有些看似无限循环的式子其实可以倒着递推1、骰子基础版题目描述众所周知,骰子是一个六面分别刻有一到六点的立方体,每次投掷骰子,从理论上讲得到一点到六点的概率都是\(1/6\)。今有骰子一颗,连续投掷\(N\)次,问点数总和大于等于\(X\)的概率是多少?输入仅有一行包
- HDU 4254 A Famous Game(概率与期望)
clover_hxy
组合数学概率与期望
题目描述传送门题目大意:一个口袋里有n个红色或蓝色的球。n+1种颜色分布情况(i个红球n−i个蓝球)的概率是相等的。B从口袋中不放回地摸出了p个球,其中有q个是红色的。求B再摸一个球时,摸出的球是红色的概率。题解设Nk表示n个球中有k个红球的概率。A表示p个球中有q个红球B表示下次摸出的是红球那么P(Nk)=1n+1P(A)=C(k,q)C(n−k,p−q)C(n,p)P(B|ANk)=k−qn−
- HDU 5753 Permutation Bo (概率与期望)
等我学会后缀自动机
HDU习题集规律/递推概率论/博弈论
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5753#includeusingnamespacestd;#definedebugputs("YES");#definerep(x,y,z)for(int(x)=(y);(x)#definemk(x,y)make_pair(x,y)#definefifirst#definesesecondconstin
- 【总结】概率与期望
616156
总结数论DP高斯消元数学概率与期望
前言作为NOIP级的知识点,概率与期望算是比较困难的类型了。但其实也不是无法解决的难题。本文主要通过作者本人的刷题经历,对概率期望类题目进行总结。概率51Nod1639绑鞋带:有n根鞋带混在一起,每根鞋带有两个鞋带头。现在重复n次以下操作:随机抽出两个鞋带头,把它们绑在一起。求最终只形成一个环的概率?依次考虑每一步操作,现在已经选出来了一个头,它必须和非它所在的链的另一个头绑在一起,才能得到合法方
- 概率与期望详解!一次精通oi中的概率期望
Tyl18858230607
目录基础概念最大值不超过Y的期望概率为P时期望成功次数基础问题拿球随机游走经典问题期望线性性练习题例题选讲noip2016换教室区间交0-1边树求直径期望球染色区间翻转二位&三维凸包点数期望单选错位KILL后记@(期望与概率)基础概念随机变量:有多种可能的取值的变量万物都可以当做随机变量,包括常数,方便用\(\sum\)统计P(A):事件A发⽣的概率E(X):随机变量X的期望值,\(E(X)=Su
- 隐马尔可夫模型
tt12121221
隐马尔可夫模型隐马尔科夫模型的基本概念概率计算算法直接计算法前向算法后向算法一些概率与期望的计算学习算法Baum-Welch算法预测算法近似算法维特比算法是用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成的观测序列的过程,属于生成模型。马尔科夫模型中主要讨论三个问题:即概率计算算法、学习算法以及预测算法。隐马尔科夫模型的基本概念隐马尔科夫模型由初始概率分布、状态转移概率分布以及观测概率分
- 概率期望中高斯消元的几种用法
IDnumber4
数论题解总结
前置知识:高斯消元法博主理解浅显,只能膜piao别人的总结戳别人家的题解咳咳……还是简单介绍两句它可以用O(n3)O(n^3)O(n3)的复杂度解出n元方程组表示方法:矩阵tips:一般情况下高斯消元可能出现无解、无穷解的情况,我的做法里面没有判断,由于矩阵对角线上不会出现0。概率与期望:概率:发生的可能性期望:概率的加权平均数(表示对权值的一个预期值)eg.某图中从起点经过i步到达终点的可能性为
- codeforces 335E. Counting Skyscrapers (概率与期望)
clover_hxy
概率与期望
题目描述传送门中文题意题解先从简单的的入手吧。(1)由BOb推Alice我们需要证明的就是如果得分是2^i,那么经过的楼数也是2^i(这里经过的楼数指的是中间经过的数量+右端点)我们假设左端点一定可以连高度是i+1,编号是i的溜索,那么他的概率就是1.对于中间经过的溜索我们要求他们的高度是[1..i]之间的任意数,右端点的高度是[i+1…inf]那么中间经过的数量实际也是正无穷项。先考虑高度是[1
- 【专题】概率和期望
weixin_33923762
【参考】浅析竞赛中一类数学期望问题的解决方法信息学竞赛中概率问题求解初探WC2018冬令营课件《概率与期望及其应用》曹文【概率的定义】基本事件是一次实验可能出现的不可再分解的直接结果,样本空间Ω是全体基本事件的集合,随机事件是若干基本事件组成的集合。事件的并:事件C=”事件A与事件B至少有一个发生“,则C=A∪B。事件的交:同时发生,A∩B。一个随机事件的概率可以认为是事件占样本空间的比例(不严格
- 洛谷P1654 OSU!_概率与期望
EM-LGH
Code:#include#includeusingnamespacestd;constintmaxn=1000000+4;doublef[maxn],g[maxn],h[maxn];intmain(){intn;scanf("%d",&n);for(inti=1;i<=n;++i){doubleperc;scanf("%lf",&perc);h[i]=(h[i-1]+1)*perc;g[i]=(
- LuoguP1654 OSU! 概率与期望
EM-LGH
感觉数学期望这里始终都没太学明白.期望在任何时候都具有线性性,即$E(a+b)=E(a)+E(b)$,这个式子任何时候都成立.先考虑求$x$,$x^2$.令$x1[i]$表示$i$为$1$向前的极长$1$的期望长度,$x2[i],x3[i]$为$x^2,x^3$的期望.那么考虑从$i-1$那里转移过来,就是$E(j+1)=E(j)+E(1)=E(j)+1$.概率是$q[i]$,所以$x1[i]=(
- 老年(已退役)选手复习计划 PART2
CR1SceNT
放上来有些符号产生了一点偏差。。不知道怎么变成了问号。。比较懒懒得改了。。意会,意会。。2017.7.4:概率与期望:1.BZOJ1415:预处理p[x][y]表示,猫在x,鼠在y时猫下一步走哪里。然后记忆化搜索。2.BZOJ3450:再求一个期望长度就好解决了。斜率优化:1.BZOJ1010:推式子。2.BZOJ1096:同上。3.BZOJ3156:同上。4.BZOJ3437:同上。5.BZOJ
- [学习笔记]高斯消元求解两种特殊问题(带状矩阵/主元法)
C20190406Panda_hu
#OI知识点合辑
本文章是[学习笔记]概率与期望进阶的一部分由于时间问题我写的比较简略,所以我把大佬的总结链接贴上来了(应该没什么吧qwq)。1概述最常见的当然是随机游走问题了…•fu=∑pu,v∗(fv+wu,v)f_u=\sump_{u,v}*(f_{v}+w_{u,v})fu=∑pu,v∗(fv+wu,v)•计算期望在这个节点上,停留多少步:fu=∑pv,u∗fv+[u=S]f_u=\sump_{v,u}*f
- 【概率与期望】【暴力搜索】[Codeforces#621]题解+总结
weixin_30340775
WetSharkandOddandEven题目描述Today,WetSharkisgivennintegers.Usinganyoftheseintegersnomorethanonce,WetSharkwantstogetmaximumpossibleeven(divisibleby2)sum.Please,calculatethisvalueforWetShark.Note,thatifWet
- [CodeForces891E]Lust-生成函数-概率与期望
zlttttt
生成函数【GenerationFunction】Theory】
LustAfalsewitnessthatspeakethlies!Youaregivenasequencecontainingnintegers.Thereisavariableresthatisequalto0initially.Thefollowingprocessrepeatsktimes.Chooseanindexfrom1tonuniformlyatrandom.Nameitx.Add
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st