linux 内存管理 1.ARMv8 MMU及Linux页表映射

背景
Read the fucking source code! --By 鲁迅
A picture is worth a thousand words. --By 高尔基

说明:

Kernel版本:4.14
ARM64处理器,Contex-A53,双核
使用工具:Source Insight 3.5, Visio

1. 介绍

要想理解好Linux的页表映射,MMU的机制是需要去熟悉的,因此将这两个模块放到一起介绍。
关于ARMv8 MMU的相关内容,主要参考文档:《ARM Cortex-A Series Programmer’s Guide for ARMv8-A》。

2. ARMv8 MMU

2.1 MMU/TLB/Cache概述

1.MMU:完成的工作就是虚拟地址到物理地址的转换,可以让系统中的多个程序跑在自己独立的虚拟地址空间中,相互不会影响。程序可以对底
层的物理内存一无所知,物理地址可以是不连续的,但是不妨碍映射连续的虚拟地址空间。
2.TLB:MMU工作的过程就是查询页表的过程,页表放置在内存中时查询开销太大,因此专门有一小片访问更快的区域用于存放地址转换条目,用
于提高查找效率。当页表内容有变化的时候,需要清除TLB,以防止地址映射出错。
3.Cache:处理器和存储器之间的缓存机制,用于提高访问速率,在ARMv8上会存在多级Cache,其中L1 Cache分为指令Cache和数据Cache,在
CPU Core的内部,支持虚拟地址寻址;L2 Cache容量更大,同时存储指令和数据,为多个CPU Core共用,这多个CPU Core也就组成了一个
Cluster。

下图浅黄色部分描述的就是一个地址转换的过程。
linux 内存管理 1.ARMv8 MMU及Linux页表映射_第1张图片

由于上图没有体现出L1和L2 Cache和MMU的关系,所以再来一张图吧:

linux 内存管理 1.ARMv8 MMU及Linux页表映射_第2张图片
那具体是怎么访问的呢?再来一张图:

linux 内存管理 1.ARMv8 MMU及Linux页表映射_第3张图片

2.2 虚拟地址到物理地址的转换

虚拟地址到物理地址的映射通过查表的机制来实现,ARMv8中,Kernel Space的页表基地址存放在TTBR1_EL1寄存器中,User Space页表基地址存放在TTBR0_EL0寄存器中,其中内核地址空间的高位为全1,(0xFFFF0000_00000000 ~ 0xFFFFFFFF_FFFFFFFF),用户地址空间的高位为全0,(0x00000000_00000000 ~ 0x0000FFFF_FFFFFFFF)
linux 内存管理 1.ARMv8 MMU及Linux页表映射_第4张图片

ARMv8中:

虚拟地址支持:
64位虚拟地址中,并不是所有位都用上,除了高16位用于区分内核空间和用户空间外,有效位的配置可以是:36, 39, 42, 47。这可决定
Linux内核中地址空间的大小。比如我使用的内核中有效位配置为CONFIG_ARM64_VA_BITS=39,用户空间地址范围:0x00000000_00000000 ~ 
0x0000007f_ffffffff,大小为512G,内核空间地址范围:0xffffff80_00000000 ~ 0xffffffff_ffffffff,大小为512G。

页面大小支持:
支持3种页面大小:4KB, 16KB, 64KB。

页表支持:
支持至少两级页表,至多四级页表,Level 0 ~ Level 3

结合有效虚拟地址位, 页面大小,页表的级数,可以组合成不同的页表映射方式。
我使用的内核配置为:39位有效位,4KB大小页面,3级页表,所以我会以这个组合来介绍。
在ARMv8的手册中刚好找到了下图,描述了整个translation的过程,简直完美:
linux 内存管理 1.ARMv8 MMU及Linux页表映射_第5张图片

虚拟地址[63:39]用于区分内核空间与用户空间,从而选择不同的TTBRn寄存器来获取Level 1页表基地址;
虚拟地址[38:30]放置Level 1页表中的索引,从而找到对应的描述符地址并获取描述符内容,根据描述符中的内容获取Level 2页表基地址;
虚拟地址[29:21]Level 2页表中的索引,从而找到对应的描述符地址并获取描述符内容,根据描述符中的内容获取Level 3页表基地址;
虚拟地址[20:12]Level 3页表中的索引,从而找到对应的描述符地址并获取描述符内容,根据描述符中的内容获取物理地址的高36位,以4K
地址对齐;
虚拟地址[11:0]放置的是物理地址的偏移,结合获取的物理地址高位,最终得到物理地址。

讲到这里还没有完,是时候看一下Table Descriptor了,也就是页表中存放的内容,有以下四种类型:
linux 内存管理 1.ARMv8 MMU及Linux页表映射_第6张图片

类型有低两位来决定,其中Level 0中的Table Descriptor只能输出Level 1页表的地址,Level 3中的Table Descriptor只能输出block addresses
看到图中的attributes了吗,这些可以用于memory的权限控制,memory ordering,cache policy的操作等。

在ARMv8中,与页表相关的寄存器有:TCR_EL1, TTBRx_EL1.

3. Linux页表映射

3.1 Linux页表基本操作

看过《深入理解Linux内核》的同学应该很熟悉下边这张图片,Linux的分页模式(图中以X86为例,页表基地址由CR3寄存器指定):

linux 内存管理 1.ARMv8 MMU及Linux页表映射_第7张图片
在Linux内核中支持4级页表的模型,同时适用于32位和64位系统。

那么ARMv8与Linux内核是怎么结合的呢?以我实际使用的设置(39位有效位,4KB大小页面,3级页表)为例,如下图所示:

linux 内存管理 1.ARMv8 MMU及Linux页表映射_第8张图片
基本上内核中关于页表的操作都会围绕着上图进行操作,似乎脱离了代码有点不太合适,那么就来一波fucking source code解析吧,主要讲讲各类page table相关的API。

代码路径:

arch/arm64/include/asm/pgtable-types.h:定义pgd_t, pud_t, pmd_t, pte_t等类型;
arch/arm64/include/asm/pgtable-prot.h:针对页表中entry中的权限内容设置;
arch/arm64/include/asm/pgtable-hwdef.h:主要包括虚拟地址中PGD/PMD/PUD等的划分,这个与虚拟地址的有效位及分页大小有关,此外
还包括硬件页表的定义, TCR寄存器中的设置等;
arch/arm64/include/asm/pgtable.h:页表设置相关;

在这些代码中可以看到,

当CONFIG_PGTABLE_LEVELS=4时:pgd-->pud-->pmd-->pte;
当CONFIG_PGTABLE_LEVELS=3时,没有PUD页表:pgd(pud)-->pmd-->pte;
当CONFIG_PGTABLE_LEVELS=2时,没有PUD和PMD页表:pgd(pud, pmd)-->pte

常用的宏定义
linux 内存管理 1.ARMv8 MMU及Linux页表映射_第9张图片

页表处理

/*描述各级页表中的页表项*/
typedef struct { pteval_t pte; } pte_t;
typedef struct { pmdval_t pmd; } pmd_t;
typedef struct { pudval_t pud; } pud_t;
typedef struct { pgdval_t pgd; } pgd_t;

/*  将页表项类型转换成无符号类型 */
#define pte_val(x)	((x).pte)
#define pmd_val(x)	((x).pmd)
#define pud_val(x)	((x).pud)
#define pgd_val(x)	((x).pgd)

/*  将无符号类型转换成页表项类型 */
#define __pte(x)	((pte_t) { (x) } )
#define __pmd(x)	((pmd_t) { (x) } )
#define __pud(x)	((pud_t) { (x) } )
#define __pgd(x)	((pgd_t) { (x) } )

/* 获取页表项的索引值 */
#define pgd_index(addr)		(((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
#define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
#define pmd_index(addr)		(((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))

/*  获取页表中entry的偏移值 */
#define pgd_offset(mm, addr)	(pgd_offset_raw((mm)->pgd, (addr)))
#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
#define pud_offset_phys(dir, addr)	(pgd_page_paddr(*(dir)) + pud_index(addr) * sizeof(pud_t))
#define pud_offset(dir, addr)		((pud_t *)__va(pud_offset_phys((dir), (addr))))
#define pmd_offset_phys(dir, addr)	(pud_page_paddr(*(dir)) + pmd_index(addr) * sizeof(pmd_t))
#define pmd_offset(dir, addr)		((pmd_t *)__va(pmd_offset_phys((dir), (addr))))
#define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
#define pte_offset_kernel(dir,addr)	((pte_t *)__va(pte_offset_phys((dir), (addr))))

3.2 head.S中的页表映射

3.2.1 idmap_pg_dir和swapper_pg_dir临时页表

是时候来个实例分析了,看看页表的创建过程,代码路径:arch/arm64/kernel/head.S。
内核启动过程中,在真正的物理内存尚未添加进系统,以及页表还未初始化之前,为了保证系统能正常运行,需要建立两个临时全局页表:idmap_pg_dir和swapper_pg_dir:
其中两个全局页表的定义在arch/arm64/kernel/vmlinux.lds.S中,放置在BSS段之后:

. = ALIGN(PAGE_SIZE);
idmap_pg_dir = .;
. += IDMAP_DIR_SIZE;
swapper_pg_dir = .;
. += SWAPPER_DIR_SIZE;
/*  定义了连续的几个页,分别存放PGD,PMD,PTE等,连续在一起,这个也是head.S中填充的 */
#define SWAPPER_DIR_SIZE	(SWAPPER_PGTABLE_LEVELS * PAGE_SIZE)
#define IDMAP_DIR_SIZE		(IDMAP_PGTABLE_LEVELS * PAGE_SIZE)

idmap_pg_dir

从名字可以看出,identify map,也就是物理地址和虚拟地址是相等的。为什么需要这么一个映射呢?我们都知道在MMU打开之前,CPU访问的都是物理地址,那么当MMU打开后访问的就是虚拟地址了,这段页表的映射就是从CPU到打开MMU之前的这段代码物理地址的映射,防止开启MMU后,无法获取页表。可以从System.map文件中查看这些代码:

linux 内存管理 1.ARMv8 MMU及Linux页表映射_第10张图片

swapper_pg_dir

Linux内核编译后,kernel image是需要进行映射的,包括text,data等各种段。

3.2.2 页表创建

head.S中,创建页表相关的有三个宏:

create_pgd_entry

/*
 * Macro to populate the PGD (and possibily PUD) for the corresponding
 * block entry in the next level (tbl) for the given virtual address.
 *
 * Preserves:	tbl, next, virt
 * Corrupts:	tmp1, tmp2
 */
	.macro	create_pgd_entry, tbl, virt, tmp1, tmp2
	create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2
#if SWAPPER_PGTABLE_LEVELS > 3
	create_table_entry \tbl, \virt, PUD_SHIFT, PTRS_PER_PUD, \tmp1, \tmp2
#endif
#if SWAPPER_PGTABLE_LEVELS > 2
	create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2
#endif
	.endm

上述函数主要是调用create_table_entry,由于SWAPPER_PGTABLES配置为3,因此相当于创建了pgd和pmd两级页表,此处需要注意一点,create_table_entry函数执行后,tbl参数会自动加上PAGE_SIZE,也就是说pgd和pmd两级页表是物理连续的。

create_block_map

/*
 * Macro to populate block entries in the page table for the start..end
 * virtual range (inclusive).
 *
 * Preserves:	tbl, flags
 * Corrupts:	phys, start, end, pstate
 */
	.macro	create_block_map, tbl, flags, phys, start, end
	lsr	\phys, \phys, #SWAPPER_BLOCK_SHIFT
	lsr	\start, \start, #SWAPPER_BLOCK_SHIFT
	and	\start, \start, #PTRS_PER_PTE - 1	// table index
	orr	\phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT	// table entry
	lsr	\end, \end, #SWAPPER_BLOCK_SHIFT
	and	\end, \end, #PTRS_PER_PTE - 1		// table end index
9999:	str	\phys, [\tbl, \start, lsl #3]		// store the entry
	add	\start, \start, #1			// next entry
	add	\phys, \phys, #SWAPPER_BLOCK_SIZE		// next block
	cmp	\start, \end
	b.ls	9999b
	.endm

上述函数主要是往block中填充pte entry,真正创建虚拟地址到物理地址的映射,映射区域:start ~ end。

create_table_entry

/*
 * Macro to create a table entry to the next page.
 *
 *	tbl:	page table address
 *	virt:	virtual address
 *	shift:	#imm page table shift
 *	ptrs:	#imm pointers per table page
 *
 * Preserves:	virt
 * Corrupts:	tmp1, tmp2
 * Returns:	tbl -> next level table page address
 */
	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
	lsr	\tmp1, \virt, #\shift
	and	\tmp1, \tmp1, #\ptrs - 1	// table index
	add	\tmp2, \tbl, #PAGE_SIZE
	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
	str	\tmp2, [\tbl, \tmp1, lsl #3]
	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
	.endm

上述函数创建页表项,并且返回下一个Level的页表地址。

上述三个孤立的函数并不直观,所以,图来了:

linux 内存管理 1.ARMv8 MMU及Linux页表映射_第11张图片
总体来说,页表的创建过程相对来说还是比较易懂的,掌握好几级页表及各级页表index所占的位域,此外熟悉各个Level页表中entry的格式,理解起来就会顺畅很多了。

一抠细节深似海,点到为止,防止一叶障目不见泰山,收工!

作者:LoyenWang
出处:https://www.cnblogs.com/LoyenWang/
公众号:LoyenWang
版权:本文版权归作者和博客园共有
转载:欢迎转载,但未经作者同意,必须保留此段声明;必须在文章中给出原文连接;否则必究法律责任

你可能感兴趣的:(linux,内存管理)