1. 变量提升
执行js代码时,会生成执行环境(全局执行环境、函数执行环境)。
在省城执行环境时,会有两个阶段:创建阶段,js解析器会找出需要提升的变量和函数,并且给它们提前在内存中开辟好空间,函数的话会将整个函数存入到内存中,变量只声明并且赋值为undefined;在代码执行阶段,我们可以直接提前使用。
函数优先于变量提升;let并不是不会提升,let提升了,第一阶段内存也为其开辟了空间,但是由于这个声明的特性导致了不能在声明前使用。
bind/call/apply区别:
call
和 apply
都是为了解决改变 this
的指向。作用都是相同的,只是传参的方式不同。除了第一个参数外,call
可以接收一个参数列表,apply
只接受一个参数数组。
call(thisArg , ...arguments); apply(thisArg,[...arguments]);
function Product(name, price) {
this.name = name;
this.price = price;
}
function Food(name, price) {
Product.call(this, name, price);
this.category = 'food';
}
console.log(new Food('cheese', 5).name); // expected output: "cheese"
bind
和其他两个方法作用也是一致的,只是该方法会返回一个函数。并且我们可以通过 bind
实现柯里化。
简单说下原型链
每个函数都有 prototype
属性,除了 Function.prototype.bind()
,该属性指向原型。
每个对象都有 __proto__
属性,指向了创建该对象的构造函数的原型。其实这个属性指向了 [[prototype]]
,但是 [[prototype]]
是内部属性,我们并不能访问到,所以使用 _proto_
来访问。
对象可以通过 __proto__
来寻找不属于该对象的属性,__proto__
将对象连接起来组成了原型链。
怎么判断对象类型?
可以通过 Object.prototype.toString.call(xx)
。这样我们就可以获得类似 [object Type]
的字符串。
instanceof
可以正确的判断对象的类型,因为内部机制是通过判断对象的原型链中是不是能找到类型的 prototype
。
浏览器 Eventloop 和 Node 中的有什么区别
JS 是门非阻塞单线程语言,因为在最初 JS 就是为了和浏览器交互而诞生的。如果 JS 是门多线程的语言话,我们在多个线程中处理 DOM 就可能会发生问题(一个线程中新加节点,另一个线程中删除节点),当然可以引入读写锁解决这个问题。
JS 在执行的过程中会产生执行环境,这些执行环境会被顺序的加入到执行栈中。如果遇到异步的代码,会被挂起并加入到 Task(有多种 task) 队列中。一旦执行栈为空,Event Loop 就会从 Task 队列中拿出需要执行的代码并放入执行栈中执行,所以本质上来说 JS 中的异步还是同步行为。
不同的任务源会被分配到不同的 Task 队列中,任务源可以分为 微任务(microtask) 和 宏任务(macrotask)。在 ES6 规范中,microtask 称为 jobs
,macrotask 称为 task
。
微任务包括 process.nextTick ,promise ,Object.observe ,MutationObserver
宏任务包括 script , setTimeout ,setInterval ,setImmediate ,I/O ,UI rendering
很多人有个误区,认为微任务快于宏任务,其实是错误的。因为宏任务中包括了 script ,浏览器会先执行一个宏任务,接下来有异步代码的话就先执行微任务。
所以正确的一次 Event loop 顺序是这样的
执行同步代码,这属于宏任务
执行栈为空,查询是否有微任务需要执行
执行所有微任务
必要的话渲染 UI
然后开始下一轮 Event loop,执行宏任务中的异步代码
通过上述的 Event loop 顺序可知,如果宏任务中的异步代码有大量的计算并且需要操作 DOM 的话,为了更快的 界面响应,我们可以把操作 DOM 放入微任务中。
Node 中的 Event loop
Node 中的 Event loop 和浏览器中的不相同。
Node 的 Event loop 分为6个阶段,它们会按照顺序反复运行
┌───────────────────────┐
┌─>│ timers │
│ └──────────┬────────────┘
│ ┌──────────┴────────────┐
│ │ I/O callbacks │
│ └──────────┬────────────┘
│ ┌──────────┴────────────┐
│ │ idle, prepare │
│ └──────────┬────────────┘ ┌───────────────┐
│ ┌──────────┴────────────┐ │ incoming: │
│ │ poll │<──connections─── │
│ └──────────┬────────────┘ │ data, etc. │
│ ┌──────────┴────────────┐ └───────────────┘
│ │ check │
│ └──────────┬────────────┘
│ ┌──────────┴────────────┐
└──┤ close callbacks │
└───────────────────────┘
timer
timers 阶段会执行 setTimeout 和 setInterval
一个 timer 指定的时间并不是准确时间,而是在达到这个时间后尽快执行回调,可能会因为系统正在执行别的事务而延迟。
下限的时间有一个范围:[1, 2147483647] ,如果设定的时间不在这个范围,将被设置为1。
**I/O **
I/O 阶段会执行除了 close 事件,定时器和 setImmediate 的回调
idle, prepare
idle, prepare 阶段内部实现
poll
poll 阶段很重要,这一阶段中,系统会做两件事情
执行到点的定时器
执行 poll 队列中的事件
并且当 poll 中没有定时器的情况下,会发现以下两件事情
如果 poll 队列不为空,会遍历回调队列并同步执行,直到队列为空或者系统限制
如果 poll 队列为空,会有两件事发生
如果有 setImmediate 需要执行,poll 阶段会停止并且进入到 check 阶段执行 setImmediate
如果没有 setImmediate 需要执行,会等待回调被加入到队列中并立即执行回调
如果有别的定时器需要被执行,会回到 timer 阶段执行回调。
check
check 阶段执行 setImmediate
close callbacks
close callbacks 阶段执行 close 事件
并且在 Node 中,有些情况下的定时器执行顺序是随机的
setTimeout(() => {
console.log('setTimeout');
}, 0);
setImmediate(() => {
console.log('setImmediate');
})
// 这里可能会输出 setTimeout,setImmediate
// 可能也会相反的输出,这取决于性能
// 因为可能进入 event loop 用了不到 1 毫秒,这时候会执行 setImmediate
// 否则会执行 setTimeout
当然在这种情况下,执行顺序是相同的
var fs = require('fs')
fs.readFile(__filename, () => {
setTimeout(() => {
console.log('timeout');
}, 0);
setImmediate(() => {
console.log('immediate');
});
});
// 因为 readFile 的回调在 poll 中执行
// 发现有 setImmediate ,所以会立即跳到 check 阶段执行回调
// 再去 timer 阶段执行 setTimeout
// 所以以上输出一定是 setImmediate,setTimeout
上面介绍的都是 macrotask 的执行情况,microtask 会在以上每个阶段完成后立即执行。
setTimeout(()=>{
console.log('timer1')
Promise.resolve().then(function() {
console.log('promise1')
})
}, 0)
setTimeout(()=>{
console.log('timer2')
Promise.resolve().then(function() {
console.log('promise2')
})
}, 0)
// 以上代码在浏览器和 node 中打印情况是不同的
// 浏览器中一定打印 timer1, promise1, timer2, promise2
// node 中可能打印 timer1, timer2, promise1, promise2
// 也可能打印 timer1, promise1, timer2, promise2
Node 中的 process.nextTick 会先于其他 microtask 执行。
setTimeout(() => {
console.log("timer1");
Promise.resolve().then(function() {
console.log("promise1");
});
}, 0);
process.nextTick(() => {
console.log("nextTick");
});
// nextTick, timer1, promise1
深拷贝
这个问题通常可以通过 JSON.parse(JSON.stringify(object))
来解决。
let a = {
age: 1,
jobs: {
first: 'FE'
}
}
let b = JSON.parse(JSON.stringify(a))
a.jobs.first = 'native'
console.log(b.jobs.first) // FE
但是该方法也是有局限性的:
会忽略 undefined
会忽略 symbol
不能序列化函数
不能解决循环引用的对象
在遇到函数、 undefined
或者 symbol
的时候,该对象也不能正常的序列化
let a = {
age: undefined,
sex: Symbol('male'),
jobs: function() {},
name: 'yck'
}
let b = JSON.parse(JSON.stringify(a))
console.log(b) // {name: "yck"}
你会发现在上述情况中,该方法会忽略掉函数和 undefined
。
但是在通常情况下,复杂数据都是可以序列化的,所以这个函数可以解决大部分问题,并且该函数是内置函数中处理深拷贝性能最快的。当然如果你的数据中含有以上三种情况下,可以使用 lodash 的深拷贝函数。
如果你所需拷贝的对象含有内置类型并且不包含函数,可以使用 MessageChannel
function structuralClone(obj) {
return new Promise(resolve => {
const {port1, port2} = new MessageChannel();
port2.onmessage = ev => resolve(ev.data);
port1.postMessage(obj);
});
}
var obj = {a: 1, b: {
c: b
}}
// 注意该方法是异步的
// 可以处理 undefined 和循环引用对象
(async () => {
const clone = await structuralClone(obj)
})()
typeof 于 instanceof 区别
typeof null // 'object'
在 JS 的最初版本中,使用的是 32 位系统,为了性能考虑使用低位存储了变量的类型信息,000 开头代表是对象,然而 null 表示为全零,所以将它错误的判断为 object 。虽然现在的内部类型判断代码已经改变了,但是对于这个 Bug 却是一直流传下来。
instanceof
可以正确的判断对象的类型,因为内部机制是通过判断对象的原型链中是不是能找到类型的 prototype
。
cookie和localSrorage、session、indexDB 的区别
特性 |
cookie |
localStorage |
sessionStorage |
indexDB |
---|---|---|---|---|
数据生命周期 |
一般由服务器生成,可以设置过期时间 |
除非被清理,否则一直存在 |
页面关闭就清理 |
除非被清理,否则一直存在 |
数据存储大小 |
4K |
5M |
5M |
无限 |
与服务端通信 |
每次都会携带在 header 中,对于请求性能影响 |
不参与 |
不参与 |
不参与 |
从上表可以看到,cookie
已经不建议用于存储。如果没有大量数据存储需求的话,可以使用 localStorage
和 sessionStorage
。对于不怎么改变的数据尽量使用 localStorage
存储,否则可以用 sessionStorage
存储。
对于 cookie
,我们还需要注意安全性。
属性 |
作用 |
---|---|
value |
如果用于保存用户登录态,应该将该值加密,不能使用明文的用户标识 |
http-only |
不能通过 JS 访问 Cookie,减少 XSS 攻击 |
secure |
只能在协议为 HTTPS 的请求中携带 |
same-site |
规定浏览器不能在跨域请求中携带 Cookie,减少 CSRF 攻击 |
JSONP 的原理很简单,就是利用 标签没有跨域限制的漏洞。通过
标签指向一个需要访问的地址并提供一个回调函数来接收数据当需要通讯时。JSONP 使用简单且兼容性不错,但是只限于
get
请求。
//封装一个 JSONP
function jsonp(url, jsonpCallback, success) {
let script = document.createElement("script");
script.src = url;
script.async = true;
script.type = "text/javascript";
window[jsonpCallback] = function(data) {
success && success(data);
};
document.body.appendChild(script);
}
jsonp(
"http://xxx",
"callback",
function(value) {
console.log(value);
}
);
postMessage
这种方式通常用于获取嵌入页面中的第三方页面数据。一个页面发送消息,另一个页面判断来源并接收消息
// 发送消息端
window.parent.postMessage('message', 'http://test.com');
// 接收消息端
var mc = new MessageChannel();
mc.addEventListener('message', (event) => {
var origin = event.origin || event.originalEvent.origin;
if (origin === 'http://test.com') {
console.log('验证通过')
}
});
Service worker
Service workers本质上充当Web应用程序与浏览器之间的代理服务器,也可以在网络可用时作为浏览器和网络间的代理。它们旨在(除其他之外)使得能够创建有效的离线体验,拦截网络请求并基于网络是否可用以及更新的资源是否驻留在服务器上来采取适当的动作。它们还允许访问推送通知和后台同步API。
目前该技术通常用来做缓存文件,提高首屏速度,可以试着来实现这个功能。
// index.js
if (navigator.serviceWorker) {
navigator.serviceWorker
.register("sw.js")
.then(function(registration) {
console.log("service worker 注册成功");
})
.catch(function(err) {
console.log("servcie worker 注册失败");
});
}
// sw.js
// 监听 `install` 事件,回调中缓存所需文件
self.addEventListener("install", e => {
e.waitUntil(
caches.open("my-cache").then(function(cache) {
return cache.addAll(["./index.html", "./index.js"]);
})
);
});
// 拦截所有请求事件
// 如果缓存中已经有请求的数据就直接用缓存,否则去请求数据
self.addEventListener("fetch", e => {
e.respondWith(
caches.match(e.request).then(function(response) {
if (response) {
return response;
}
console.log("fetch source");
})
);
});
浏览器缓存
缓存对于前端性能优化来说是个很重要的点,良好的缓存策略可以降低资源的重复加载提高网页的整体加载速度。通常浏览器缓存策略分为两种:强缓存和协商缓存。
强缓存
实现强缓存可以通过两种响应头实现:Expires 和 Cache-Control 。强缓存表示在缓存期间不需要请求,state code 为 200
Expires: Wed, 22 Oct 2018 08:41:00 GMT
Expires 是 HTTP / 1.0 的产物,表示资源会在 Wed, 22 Oct 2018 08:41:00 GMT 后过期,需要再次请求。并且 Expires 受限于本地时间,如果修改了本地时间,可能会造成缓存失效。
Cache-control: max-age=30
Cache-Control 出现于 HTTP / 1.1,优先级高于 Expires 。该属性表示资源会在 30 秒后过期,需要再次请求。
协商缓存
如果缓存过期了,我们就可以使用协商缓存来解决问题。协商缓存需要请求,如果缓存有效会返回 304。协商缓存需要客户端和服务端共同实现,和强缓存一样,也有两种实现方式。
Last-Modified 和 If-Modified-Since
Last-Modified 表示本地文件最后修改日期,If-Modified-Since 会将 Last-Modified 的值发送给服务器,询问服务器在该日期后资源是否有更新,有更新的话就会将新的资源发送回来。
但是如果在本地打开缓存文件,就会造成 Last-Modified 被修改,所以在 HTTP / 1.1 出现了 ETag 。
ETag 和 If-None-Match
ETag 类似于文件指纹,If-None-Match 会将当前 ETag 发送给服务器,询问该资源 ETag 是否变动,有变动的话就将新的资源发送回来。并且 ETag 优先级比 Last-Modified 高。
选择合适的缓存策略
对于大部分的场景都可以使用强缓存配合协商缓存解决,但是在一些特殊的地方可能需要选择特殊的缓存策略
对于某些不需要缓存的资源,可以使用 Cache-control: no-store ,表示该资源不需要缓存
对于频繁变动的资源,可以使用 Cache-Control: no-cache 并配合 ETag 使用,表示该资源已被缓存,但是每次都会发送请求询问资源是否更新。
对于代码文件来说,通常使用 Cache-Control: max-age=31536000 并配合策略缓存使用,然后对文件进行指纹处理,一旦文件名变动就会立刻下载新的文件。
浏览器性能问题
重绘(Repaint)和回流(Reflow)
重绘和回流是渲染步骤中的一小节,但是这两个步骤对于性能影响很大。
重绘是当节点需要更改外观而不会影响布局的,比如改变 color 就叫称为重绘
回流是布局或者几何属性需要改变就称为回流。
回流必定会发生重绘,重绘不一定会引发回流。回流所需的成本比重绘高的多,改变深层次的节点很可能导致父节点的一系列回流。
所以以下几个动作可能会导致性能问题:
很多人不知道的是,重绘和回流其实和 Event loop 有关。
减少重绘和回流
React 生命周期
在 V16 版本中引入了 Fiber 机制。这个机制一定程度上的影响了部分生命周期的调用,并且也引入了新的 2 个 API 来解决问题。
在之前的版本中,如果你拥有一个很复杂的复合组件,然后改动了最上层组件的 state,那么调用栈可能会很长。
调用栈过长,再加上中间进行了复杂的操作,就可能导致长时间阻塞主线程,带来不好的用户体验。Fiber 就是为了解决该问题而生。
Fiber 本质上是一个虚拟的堆栈帧,新的调度器会按照优先级自由调度这些帧,从而将之前的同步渲染改成了异步渲染,在不影响体验的情况下去分段计算更新。
对于如何区别优先级,React 有自己的一套逻辑。对于动画这种实时性很高的东西,也就是 16 ms 必须渲染一次保证不卡顿的情况下,React 会每 16 ms(以内) 暂停一下更新,返回来继续渲染动画。
对于异步渲染,现在渲染有两个阶段:reconciliation 和 commit 。前者过程是可以打断的,后者不能暂停,会一直更新界面直到完成。
Reconciliation 阶段
Commit 阶段
因为 reconciliation 阶段是可以被打断的,所以 reconciliation 阶段会执行的生命周期函数就可能会出现调用多次的情况,从而引起 Bug。所以对于 reconciliation 阶段调用的几个函数,除了 shouldComponentUpdate 以外,其他都应该避免去使用,并且 V16 中也引入了新的 API 来解决这个问题。
getDerivedStateFromProps 用于替换 componentWillReceiveProps ,该函数会在初始化和 update 时被调用
class ExampleComponent extends React.Component {
// Initialize state in constructor,
// Or with a property initializer.
state = {};
static getDerivedStateFromProps(nextProps, prevState) {
if (prevState.someMirroredValue !== nextProps.someValue) {
return {
derivedData: computeDerivedState(nextProps),
someMirroredValue: nextProps.someValue
};
}
// Return null to indicate no change to state.
return null;
}
}
getSnapshotBeforeUpdate
用于替换 componentWillUpdate
,该函数会在 update
后 DOM 更新前被调用,用于读取最新的 DOM 数据。
V16 生命周期函数用法建议
class ExampleComponent extends React.Component {
// 用于初始化 state
constructor() {}
// 用于替换 `componentWillReceiveProps` ,该函数会在初始化和 `update` 时被调用
// 因为该函数是静态函数,所以取不到 `this`
// 如果需要对比 `prevProps` 需要单独在 `state` 中维护
static getDerivedStateFromProps(nextProps, prevState) {}
// 判断是否需要更新组件,多用于组件性能优化
shouldComponentUpdate(nextProps, nextState) {}
// 组件挂载后调用
// 可以在该函数中进行请求或者订阅
componentDidMount() {}
// 用于获得最新的 DOM 数据
getSnapshotBeforeUpdate() {}
// 组件即将销毁
// 可以在此处移除订阅,定时器等等
componentWillUnmount() {}
// 组件销毁后调用
componentDidUnMount() {}
// 组件更新后调用
componentDidUpdate() {}
// 渲染组件函数
render() {}
// 以下函数不建议使用
UNSAFE_componentWillMount() {}
UNSAFE_componentWillUpdate(nextProps, nextState) {}
UNSAFE_componentWillReceiveProps(nextProps) {}
}
setState
setState 在 React 中是经常使用的一个 API,但是它存在一些问题,可能会导致犯错,核心原因就是因为这个 API 是异步的。
首先 setState 的调用并不会马上引起 state 的改变,并且如果你一次调用了多个 setState ,那么结果可能并不如你期待的一样。
handle() {
// 初始化 `count` 为 0
console.log(this.state.count) // -> 0
this.setState({ count: this.state.count + 1 })
this.setState({ count: this.state.count + 1 })
this.setState({ count: this.state.count + 1 })
console.log(this.state.count) // -> 0
}
第一,两次的打印都为 0,因为 setState 是个异步 API,只有同步代码运行完毕才会执行。setState 异步的原因我认为在于,setState 可能会导致 DOM 的重绘,如果调用一次就马上去进行重绘,那么调用多次就会造成不必要的性能损失。设计成异步的话,就可以将多次调用放入一个队列中,在恰当的时候统一进行更新过程。
第二,虽然调用了三次 setState ,但是 count 的值还是为 1。因为多次调用会合并为一次,只有当更新结束后 state 才会改变,三次调用等同于如下代码
Object.assign(
{},
{ count: this.state.count + 1 },
{ count: this.state.count + 1 },
{ count: this.state.count + 1 },
)
当然你也可以通过以下方式来实现调用三次 setState 使得 count 为 3
handle() {
this.setState((prevState) => ({ count: prevState.count + 1 }))
this.setState((prevState) => ({ count: prevState.count + 1 }))
this.setState((prevState) => ({ count: prevState.count + 1 }))
}
如果你想在每次调用 setState 后获得正确的 state ,可以通过如下代码实现 (callback)
handle() {
this.setState((prevState) => ({ count: prevState.count + 1 }), () => {
console.log(this.state)
})
}
Vue的 nextTick 原理
nextTick 可以让我们在下次 DOM 更新循环结束之后执行延迟回调,用于获得更新后的 DOM。
在 Vue 2.4 之前都是使用的 microtasks,但是 microtasks 的优先级过高,在某些情况下可能会出现比事件冒泡更快的情况,但如果都使用 macrotasks 又可能会出现渲染的性能问题。所以在新版本中,会默认使用 microtasks,但在特殊情况下会使用 macrotasks,比如 v-on。
对于实现 macrotasks ,会先判断是否能使用 setImmediate ,不能的话降级为 MessageChannel ,以上都不行的话就使用 setTimeout
if (typeof setImmediate !== 'undefined' && isNative(setImmediate)) {
macroTimerFunc = () => {
setImmediate(flushCallbacks)
}
} else if ( typeof MessageChannel !== 'undefined' &&
(isNative(MessageChannel) ||
// PhantomJS
MessageChannel.toString() === '[object MessageChannelConstructor]')
) {
const channel = new MessageChannel()
const port = channel.port2
channel.port1.onmessage = flushCallbacks
macroTimerFunc = () => {
port.postMessage(1)
}
} else {
/* istanbul ignore next */
macroTimerFunc = () => {
setTimeout(flushCallbacks, 0)
}
}
nextTick 同时也支持 Promise 的使用,会判断是否实现了 Promise
export function nextTick(cb?: Function, ctx?: Object) {
let _resolve
// 将回调函数整合进一个数组中
callbacks.push(() => {
if (cb) {
try {
cb.call(ctx)
} catch (e) {
handleError(e, ctx, 'nextTick')
}
} else if (_resolve) {
_resolve(ctx)
}
})
if (!pending) {
pending = true
if (useMacroTask) {
macroTimerFunc()
} else {
microTimerFunc()
}
}
// 判断是否可以使用 Promise
// 可以的话给 _resolve 赋值
// 这样回调函数就能以 promise 的方式调用
if (!cb && typeof Promise !== 'undefined') {
return new Promise(resolve => {
_resolve = resolve
})
}
}
生命周期函数就是组件在初始化或者数据更新时会触发的钩子函数。
在初始化时,会调用以下代码,生命周期就是通过 callHook
调用的
Vue.prototype._init = function(options) {
initLifecycle(vm)
initEvents(vm)
initRender(vm)
callHook(vm, 'beforeCreate') // 拿不到 props data
initInjections(vm)
initState(vm)
initProvide(vm)
callHook(vm, 'created')
}
可以发现在以上代码中,beforeCreate
调用的时候,是获取不到 props 或者 data 中的数据的,因为这些数据的初始化都在 initState
中。
接下来会执行挂载函数
export function mountComponent {
callHook(vm, 'beforeMount')
// ...
if (vm.$vnode == null) {
vm._isMounted = true
callHook(vm, 'mounted')
}
}
beforeMount
就是在挂载前执行的,然后开始创建 VDOM 并替换成真实 DOM,最后执行 mounted
钩子。这里会有个判断逻辑,如果是外部 new Vue({})
的话,不会存在 $vnode
,所以直接执行 mounted
钩子了。如果有子组件的话,会递归挂载子组件,只有当所有子组件全部挂载完毕,才会执行根组件的挂载钩子。
接下来是数据更新时会调用的钩子函数
function flushSchedulerQueue() {
// ...
for (index = 0; index < queue.length; index++) {
watcher = queue[index]
if (watcher.before) {
watcher.before() // 调用 beforeUpdate
}
id = watcher.id
has[id] = null
watcher.run()
// in dev build, check and stop circular updates.
if (process.env.NODE_ENV !== 'production' && has[id] != null) {
circular[id] = (circular[id] || 0) + 1
if (circular[id] > MAX_UPDATE_COUNT) {
warn(
'You may have an infinite update loop ' +
(watcher.user
? `in watcher with expression "${watcher.expression}"`
: `in a component render function.`),
watcher.vm
)
break
}
}
}
callUpdatedHooks(updatedQueue)
}
function callUpdatedHooks(queue) {
let i = queue.length
while (i--) {
const watcher = queue[i]
const vm = watcher.vm
if (vm._watcher === watcher && vm._isMounted) {
callHook(vm, 'updated')
}
}
}
上图还有两个生命周期没有说,分别为 activated
和 deactivated
,这两个钩子函数是 keep-alive
组件独有的。用 keep-alive
包裹的组件在切换时不会进行销毁,而是缓存到内存中并执行 deactivated
钩子函数,命中缓存渲染后会执行 actived
钩子函数。
最后就是销毁组件的钩子函数了
Vue.prototype.$destroy = function() {
// ...
callHook(vm, 'beforeDestroy')
vm._isBeingDestroyed = true
// remove self from parent
const parent = vm.$parent
if (parent && !parent._isBeingDestroyed && !vm.$options.abstract) {
remove(parent.$children, vm)
}
// teardown watchers
if (vm._watcher) {
vm._watcher.teardown()
}
let i = vm._watchers.length
while (i--) {
vm._watchers[i].teardown()
}
// remove reference from data ob
// frozen object may not have observer.
if (vm._data.__ob__) {
vm._data.__ob__.vmCount--
}
// call the last hook...
vm._isDestroyed = true
// invoke destroy hooks on current rendered tree
vm.__patch__(vm._vnode, null)
// fire destroyed hook
callHook(vm, 'destroyed')
// turn off all instance listeners.
vm.$off()
// remove __vue__ reference
if (vm.$el) {
vm.$el.__vue__ = null
}
// release circular reference (#6759)
if (vm.$vnode) {
vm.$vnode.parent = null
}
}
在执行销毁操作前会调用 beforeDestroy
钩子函数,然后进行一系列的销毁操作,如果有子组件的话,也会递归销毁子组件,所有子组件都销毁完毕后才会执行根组件的 destroyed
钩子函数。
在 MVVM 中,最核心的也就是数据双向绑定,例如 Angluar 的脏数据检测,Vue 中的数据劫持。
脏数据检测
当触发了指定事件后会进入脏数据检测,这时会调用 $digest 循环遍历所有的数据观察者,判断当前值是否和先前的值有区别,如果检测到变化的话,会调用 $watch 函数,然后再次调用 $digest 循环直到发现没有变化。循环至少为二次 ,至多为十次。
脏数据检测虽然存在低效的问题,但是不关心数据是通过什么方式改变的,都可以完成任务,但是这在 Vue 中的双向绑定是存在问题的。并且脏数据检测可以实现批量检测出更新的值,再去统一更新 UI,大大减少了操作 DOM 的次数。所以低效也是相对的,这就仁者见仁智者见智了。
数据劫持
Vue 内部使用了 Object.defineProperty() 来实现双向绑定,通过这个函数可以监听到 set 和 get 的事件。
var data = { name: 'yck' }
observe(data)
let name = data.name // -> get value
data.name = 'yyy' // -> change value
function observe(obj) {
// 判断类型
if (!obj || typeof obj !== 'object') {
return
}
Object.keys(obj).forEach(key => {
defineReactive(obj, key, obj[key])
})
}
function defineReactive(obj, key, val) {
// 递归子属性
observe(val)
Object.defineProperty(obj, key, {
enumerable: true,
configurable: true,
get: function reactiveGetter() {
console.log('get value')
return val
},
set: function reactiveSetter(newVal) {
console.log('change value')
val = newVal
}
})
}
以上代码简单的实现了如何监听数据的 set 和 get 的事件,但是仅仅如此是不够的,还需要在适当的时候给属性添加发布订阅
// 通过 Dep 解耦
class Dep {
constructor() {
this.subs = []
}
addSub(sub) {
// sub 是 Watcher 实例
this.subs.push(sub)
}
notify() {
this.subs.forEach(sub => {
sub.update()
})
}
}
// 全局属性,通过该属性配置 Watcher
Dep.target = null
function update(value) {
document.querySelector('div').innerText = value
}
class Watcher {
constructor(obj, key, cb) {
// 将 Dep.target 指向自己
// 然后触发属性的 getter 添加监听
// 最后将 Dep.target 置空
Dep.target = this
this.cb = cb
this.obj = obj
this.key = key
this.value = obj[key]
Dep.target = null
}
update() {
// 获得新值
this.value = this.obj[this.key]
// 调用 update 方法更新 Dom
this.cb(this.value)
}
}
var data = { name: 'yck' }
observe(data)
// 模拟解析到 `{{name}}` 触发的操作
new Watcher(data, 'name', update)
// update Dom innerText
data.name = 'yyy'
接下来,对 defineReactive
函数进行改造
function defineReactive(obj, key, val) {
// 递归子属性
observe(val)
let dp = new Dep()
Object.defineProperty(obj, key, {
enumerable: true,
configurable: true,
get: function reactiveGetter() {
console.log('get value')
// 将 Watcher 添加到订阅
if (Dep.target) {
dp.addSub(Dep.target)
}
return val
},
set: function reactiveSetter(newVal) {
console.log('change value')
val = newVal
// 执行 watcher 的 update 方法
dp.notify()
}
})
}
以上实现了一个简易的双向绑定,核心思路就是手动触发一次属性的 getter 来实现发布订阅的添加。
Proxy 与 Object.defineProperty 对比
Object.defineProperty 虽然已经能够实现双向绑定了,但是他还是有缺陷的。
虽然 Vue 中确实能检测到数组数据的变化,但是其实是使用了 hack 的办法,并且也是有缺陷的。
const arrayProto = Array.prototype
export const arrayMethods = Object.create(arrayProto)
// hack 以下几个函数
const methodsToPatch = [
'push',
'pop',
'shift',
'unshift',
'splice',
'sort',
'reverse'
]
methodsToPatch.forEach(function (method) {
// 获得原生函数
const original = arrayProto[method]
def(arrayMethods, method, function mutator (...args) {
// 调用原生函数
const result = original.apply(this, args)
const ob = this.__ob__
let inserted
switch (method) {
case 'push':
case 'unshift':
inserted = args
break
case 'splice':
inserted = args.slice(2)
break
}
if (inserted) ob.observeArray(inserted)
// 触发更新
ob.dep.notify()
return result
})
})
反观 Proxy 就没以上的问题,原生支持监听数组变化,并且可以直接对整个对象进行拦截,所以 Vue 也将在下个大版本中使用 Proxy 替换 Object.defineProperty
let onWatch = (obj, setBind, getLogger) => {
let handler = {
get(target, property, receiver) {
getLogger(target, property)
return Reflect.get(target, property, receiver);
},
set(target, property, value, receiver) {
setBind(value);
return Reflect.set(target, property, value);
}
};
return new Proxy(obj, handler);
};
let obj = { a: 1 }
let value
let p = onWatch(obj, (v) => {
value = v
}, (target, property) => {
console.log(`Get '${property}' = ${target[property]}`);
})
p.a = 2 // bind `value` to `2`
p.a // -> Get 'a' = 2
排序:
// 排序通用函数:
function checkArray(array) {
if (!array || array.length <= 2) return
}
function swap(array, left, right) {
let rightValue = array[right]
array[right] = array[left]
array[left] = rightValue
}
冒泡排序
冒泡排序的原理如下,从第一个元素开始,把当前元素和下一个索引元素进行比较。如果当前元素大,那么就交换位置,重复操作直到比较到最后一个元素,那么此时最后一个元素就是该数组中最大的数。下一轮重复以上操作,但是此时最后一个元素已经是最大数了,所以不需要再比较最后一个元素,只需要比较到 length - 1 的位置。
function bubble(array) {
checkArray(array);
for (let i = array.length - 1; i > 0; i--) {
// 从 0 到 `length - 1` 遍历
for (let j = 0; j < i; j++) {
if (array[j] > array[j + 1]) swap(array, j, j + 1)
}
}
return array;
}
该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1 ,去掉常数项以后得出时间复杂度是 O(n * n)
插入排序
插入排序的原理如下。第一个元素默认是已排序元素,取出下一个元素和当前元素比较,如果当前元素大就交换位置。那么此时第一个元素就是当前的最小数,所以下次取出操作从第三个元素开始,向前对比,重复之前的操作。
function insertion(array) {
checkArray(array);
for (let i = 1; i < array.length; i++) {
for (let j = i - 1; j >= 0 && array[j] > array[j + 1]; j--)
swap(array, j, j + 1);
}
return array;
}
该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1 ,去掉常数项以后得出时间复杂度是 O(n * n)
选择排序
选择排序的原理如下。遍历数组,设置最小值的索引为 0,如果取出的值比当前最小值小,就替换最小值索引,遍历完成后,将第一个元素和最小值索引上的值交换。如上操作后,第一个元素就是数组中的最小值,下次遍历就可以从索引 1 开始重复上述操作。
function selection(array) {
checkArray(array);
for (let i = 0; i < array.length - 1; i++) {
let minIndex = i;
for (let j = i + 1; j < array.length; j++) {
minIndex = array[j] < array[minIndex] ? j : minIndex;
}
swap(array, i, minIndex);
}
return array;
}
该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1 ,去掉常数项以后得出时间复杂度是 O(n * n)
归并排序
归并排序的原理如下。递归的将数组两两分开直到最多包含两个元素,然后将数组排序合并,最终合并为排序好的数组。假设我有一组数组 [3, 1, 2, 8, 9, 7, 6],中间数索引是 3,先排序数组 [3, 1, 2, 8] 。在这个左边数组上,继续拆分直到变成数组包含两个元素(如果数组长度是奇数的话,会有一个拆分数组只包含一个元素)。然后排序数组 [3, 1] 和 [2, 8] ,然后再排序数组 [1, 3, 2, 8] ,这样左边数组就排序完成,然后按照以上思路排序右边数组,最后将数组 [1, 2, 3, 8] 和 [6, 7, 9] 排序。
function sort(array) {
checkArray(array);
mergeSort(array, 0, array.length - 1);
return array;
}
function mergeSort(array, left, right) {
// 左右索引相同说明已经只有一个数
if (left === right) return;
// 等同于 `left + (right - left) / 2`
// 相比 `(left + right) / 2` 来说更加安全,不会溢出
// 使用位运算是因为位运算比四则运算快
let mid = parseInt(left + ((right - left) >> 1));
mergeSort(array, left, mid);
mergeSort(array, mid + 1, right);
let help = [];
let i = 0;
let p1 = left;
let p2 = mid + 1;
while (p1 <= mid && p2 <= right) {
help[i++] = array[p1] < array[p2] ? array[p1++] : array[p2++];
}
while (p1 <= mid) {
help[i++] = array[p1++];
}
while (p2 <= right) {
help[i++] = array[p2++];
}
for (let i = 0; i < help.length; i++) {
array[left + i] = help[i];
}
return array;
}
以上算法使用了递归的思想。递归的本质就是压栈,每递归执行一次函数,就将该函数的信息(比如参数,内部的变量,执行到的行数)压栈,直到遇到终止条件,然后出栈并继续执行函数。对于以上递归函数的调用轨迹如下
mergeSort(data, 0, 6) // mid = 3
mergeSort(data, 0, 3) // mid = 1
mergeSort(data, 0, 1) // mid = 0
mergeSort(data, 0, 0) // 遇到终止,回退到上一步
mergeSort(data, 1, 1) // 遇到终止,回退到上一步
// 排序 p1 = 0, p2 = mid + 1 = 1
// 回退到 `mergeSort(data, 0, 3)` 执行下一个递归
mergeSort(2, 3) // mid = 2
mergeSort(3, 3) // 遇到终止,回退到上一步
// 排序 p1 = 2, p2 = mid + 1 = 3
// 回退到 `mergeSort(data, 0, 3)` 执行合并逻辑
// 排序 p1 = 0, p2 = mid + 1 = 2
// 执行完毕回退
// 左边数组排序完毕,右边也是如上轨迹
该算法的操作次数是可以这样计算:递归了两次,每次数据量是数组的一半,并且最后把整个数组迭代了一次,所以得出表达式 2T(N / 2) + T(N)
(T 代表时间,N 代表数据量)。根据该表达式可以套用 该公式 得出时间复杂度为 O(N * logN)
快排
快排的原理如下。随机选取一个数组中的值作为基准值,从左至右取值与基准值对比大小。比基准值小的放数组左边,大的放右边,对比完成后将基准值和第一个比基准值大的值交换位置。然后将数组以基准值的位置分为两部分,继续递归以上操作。
function sort(array) {
checkArray(array);
quickSort(array, 0, array.length - 1);
return array;
}
function quickSort(array, left, right) {
if (left < right) {
swap(array, , right)
// 随机取值,然后和末尾交换,这样做比固定取一个位置的复杂度略低
let indexs = part(array, parseInt(Math.random() * (right - left + 1)) + left, right);
quickSort(array, left, indexs[0]);
quickSort(array, indexs[1] + 1, right);
}
}
function part(array, left, right) {
let less = left - 1;
let more = right;
while (left < more) {
if (array[left] < array[right]) {
// 当前值比基准值小,`less` 和 `left` 都加一
++less;
++left;
} else if (array[left] > array[right]) {
// 当前值比基准值大,将当前值和右边的值交换
// 并且不改变 `left`,因为当前换过来的值还没有判断过大小
swap(array, --more, left);
} else {
// 和基准值相同,只移动下标
left++;
}
}
// 将基准值和比基准值大的第一个值交换位置
// 这样数组就变成 `[比基准值小, 基准值, 比基准值大]`
swap(array, right, more);
return [less, more];
}
该算法的复杂度和归并排序是相同的,但是额外空间复杂度比归并排序少,只需 O(logN),并且相比归并排序来说,所需的常数时间也更少。
面试题
Sort Colors:该题目来自 LeetCode,题目需要我们将 [2,0,2,1,1,0] 排序成 [0,0,1,1,2,2] ,这个问题就可以使用三路快排的思想。
以下是代码实现
var sortColors = function(nums) {
let left = -1;
let right = nums.length;
let i = 0;
// 下标如果遇到 right,说明已经排序完成
while (i < right) {
if (nums[i] == 0) {
swap(nums, i++, ++left);
} else if (nums[i] == 1) {
i++;
} else {
swap(nums, i, --right);
}
}
};
Kth Largest Element in an Array:该题目来自 LeetCode,题目需要找出数组中第 K 大的元素,这问题也可以使用快排的思路。并且因为是找出第 K 大元素,所以在分离数组的过程中,可以找出需要的元素在哪边,然后只需要排序相应的一边数组就好。
以下是代码实现
var findKthLargest = function(nums, k) {
let l = 0
let r = nums.length - 1
// 得出第 K 大元素的索引位置
k = nums.length - k
while (l < r) {
// 分离数组后获得比基准树大的第一个元素索引
let index = part(nums, l, r)
// 判断该索引和 k 的大小
if (index < k) {
l = index + 1
} else if (index > k) {
r = index - 1
} else {
break
}
}
return nums[k]
};
function part(array, left, right) {
let less = left - 1;
let more = right;
while (left < more) {
if (array[left] < array[right]) {
++less;
++left;
} else if (array[left] > array[right]) {
swap(array, --more, left);
} else {
left++;
}
}
swap(array, right, more);
return more;
}
堆排序
堆排序利用了二叉堆的特性来做,二叉堆通常用数组表示,并且二叉堆是一颗完全二叉树(所有叶节点(最底层的节点)都是从左往右顺序排序,并且其他层的节点都是满的)。二叉堆又分为大根堆与小根堆。
堆排序的原理就是组成一个大根堆或者小根堆。以小根堆为例,某个节点的左边子节点索引是 i * 2 + 1,右边是 i * 2 + 2,父节点是 (i - 1) /2。
function heap(array) {
checkArray(array);
// 将最大值交换到首位
for (let i = 0; i < array.length; i++) {
heapInsert(array, i);
}
let size = array.length;
// 交换首位和末尾
swap(array, 0, --size);
while (size > 0) {
heapify(array, 0, size);
swap(array, 0, --size);
}
return array;
}
function heapInsert(array, index) {
// 如果当前节点比父节点大,就交换
while (array[index] > array[parseInt((index - 1) / 2)]) {
swap(array, index, parseInt((index - 1) / 2));
// 将索引变成父节点
index = parseInt((index - 1) / 2);
}
}
function heapify(array, index, size) {
let left = index * 2 + 1;
while (left < size) {
// 判断左右节点大小
let largest =
left + 1 < size && array[left] < array[left + 1] ? left + 1 : left;
// 判断子节点和父节点大小
largest = array[index] < array[largest] ? largest : index;
if (largest === index) break;
swap(array, index, largest);
index = largest;
left = index * 2 + 1;
}
}
以上代码实现了小根堆,如果需要实现大根堆,只需要把节点对比反一下就好。
该算法的复杂度是 O(logN)
系统自带排序实现
每个语言的排序内部实现都是不同的。
对于 JS 来说,数组长度大于 10 会采用快排,否则使用插入排序 源码实现 。选择插入排序是因为虽然时间复杂度很差,但是在数据量很小的情况下和 O(N * logN)相差无几,然而插入排序需要的常数时间很小,所以相对别的排序来说更快。
对于 Java 来说,还会考虑内部的元素的类型。对于存储对象的数组来说,会采用稳定性好的算法。稳定性的意思就是对于相同值来说,相对顺序不能改变。
介绍下设计模式
工厂模式
工厂模式分为好几种,这里就不一一讲解了,以下是一个简单工厂模式的例子
class Man {
constructor(name) {
this.name = name
}
alertName() {
alert(this.name)
}
}
class Factory {
static create(name) {
return new Man(name)
}
}
Factory.create('yck').alertName()
当然工厂模式并不仅仅是用来 new 出实例。
可以想象一个场景。假设有一份很复杂的代码需要用户去调用,但是用户并不关心这些复杂的代码,只需要你提供给我一个接口去调用,用户只负责传递需要的参数,至于这些参数怎么使用,内部有什么逻辑是不关心的,只需要你最后返回我一个实例。这个构造过程就是工厂。
工厂起到的作用就是隐藏了创建实例的复杂度,只需要提供一个接口,简单清晰。
在 Vue 源码中,你也可以看到工厂模式的使用,比如创建异步组件
export function createComponent (
Ctor: Class | Function | Object | void,
data: ?VNodeData,
context: Component,
children: ?Array,
tag?: string
): VNode | Array | void {
// 逻辑处理...
const vnode = new VNode(
`vue-component-${Ctor.cid}${name ? `-${name}` : ''}`,
data, undefined, undefined, undefined, context,
{ Ctor, propsData, listeners, tag, children },
asyncFactory
)
return vnode
}
在上述代码中,我们可以看到我们只需要调用 createComponent 传入参数就能创建一个组件实例,但是创建这个实例是很复杂的一个过程,工厂帮助我们隐藏了这个复杂的过程,只需要一句代码调用就能实现功能。
单例模式
单例模式很常用,比如全局缓存、全局状态管理等等这些只需要一个对象,就可以使用单例模式。
单例模式的核心就是保证全局只有一个对象可以访问。因为 JS 是门无类的语言,所以别的语言实现单例的方式并不能套入 JS 中,我们只需要用一个变量确保实例只创建一次就行,以下是如何实现单例模式的例子
class Singleton {
constructor() {}
}
Singleton.getInstance = (function() {
let instance
return function() {
if (!instance) {
instance = new Singleton()
}
return instance
}
})()
let s1 = Singleton.getInstance()
let s2 = Singleton.getInstance()
console.log(s1 === s2) // true
在 Vuex 源码中,你也可以看到单例模式的使用,虽然它的实现方式不大一样,通过一个外部变量来控制只安装一次 Vuex
let Vue // bind on install
export function install (_Vue) {
if (Vue && _Vue === Vue) {
// ...
return
}
Vue = _Vue
applyMixin(Vue)
}
适配器模式
适配器用来解决两个接口不兼容的情况,不需要改变已有的接口,通过包装一层的方式实现两个接口的正常协作。
以下是如何实现适配器模式的例子
class Plug {
getName() {
return '港版插头'
}
}
class Target {
constructor() {
this.plug = new Plug()
}
getName() {
return this.plug.getName() + ' 适配器转二脚插头'
}
}
let target = new Target()
target.getName() // 港版插头 适配器转二脚插头
在 Vue 中,我们其实经常使用到适配器模式。比如父组件传递给子组件一个时间戳属性,组件内部需要将时间戳转为正常的日期显示,一般会使用 computed 来做转换这件事情,这个过程就使用到了适配器模式。
装饰模式
装饰模式不需要改变已有的接口,作用是给对象添加功能。就像我们经常需要给手机戴个保护套防摔一样,不改变手机自身,给手机添加了保护套提供防摔功能。
以下是如何实现装饰模式的例子,使用了 ES7 中的装饰器语法
function readonly(target, key, descriptor) {
descriptor.writable = false
return descriptor
}
class Test {
@readonly
name = 'yck'
}
let t = new Test()
t.yck = '111' // 不可修改
在 React 中,装饰模式其实随处可见
import { connect } from 'react-redux'
class MyComponent extends React.Component {
// ...
}
export default connect(mapStateToProps)(MyComponent)
代理模式
代理是为了控制对对象的访问,不让外部直接访问到对象。在现实生活中,也有很多代理的场景。比如你需要买一件国外的产品,这时候你可以通过代购来购买产品。
在实际代码中其实代理的场景很多,也就不举框架中的例子了,比如事件代理就用到了代理模式。
- 1
- 2
- 3
- 4
- 5
因为存在太多的 li,不可能每个都去绑定事件。这时候可以通过给父节点绑定一个事件,让父节点作为代理去拿到真实点击的节点。
发布-订阅模式
发布-订阅模式也叫做观察者模式。通过一对一或者一对多的依赖关系,当对象发生改变时,订阅方都会收到通知。在现实生活中,也有很多类似场景,比如我需要在购物网站上购买一个产品,但是发现该产品目前处于缺货状态,这时候我可以点击有货通知的按钮,让网站在产品有货的时候通过短信通知我。
在实际代码中其实发布-订阅模式也很常见,比如我们点击一个按钮触发了点击事件就是使用了该模式
在 Vue 中,如何实现响应式也是使用了该模式。对于需要实现响应式的对象来说,在 get 的时候会进行依赖收集,当改变了对象的属性时,就会触发派发更新。